
Oracle ® Application Server

Developer’s Guide: C++ CORBA Applications

Release 4.0.8.1

September 1999

Part No. A70039-01

Oracle Application Server Release 4.0.8.1 Developer’s Guide: C++ CORBA Applications

Part No. A70039-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Alka Srivastava

Contributors: Seshu Adunuthula, Azariah Jeyakumar, Raymond Ng, Gerald Ingalls

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software
- Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and the Oracle logo, NLS*WorkBench, Pro*COBOL, Pro*FORTRAN,
Pro*Pascal, SQL*Loader, SQL*Module, SQL*Net, SQL*Plus, Oracle7, Oracle Server, Oracle Server Manager,
Oracle Call Interface, Oracle7 Enterprise Backup Utility, Oracle TRACE, Oracle WebServer, Oracle Web
Application Server, Oracle Application Server, Oracle Network Manager, Secure Network Services, Oracle
Parallel Server, Advanced Replication Option, Oracle Data Query, Cooperative Server Technology, Oracle
Toolkit, Oracle MultiProtocol Interchange, Oracle Names, Oracle Book, Pro*C, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Preface ... vii

1 Overview

A Component Based Application Model ... 1-1
Terminology ... 1-2
Client View of the C++ CORBA Cartridge .. 1-3
Container Architecture .. 1-4

Lifecycle ... 1-5
Transactions... 1-5
Load Balancing.. 1-5
Security... 1-6
Resource Pooling (Stateful/Stateless C++ Cartridges) ... 1-6

Application Development: General CORBA vs. C++ CORBA Cartridge 1-6
Using C++ Cartridge in an N-tier Computing Model ... 1-7

2 Tutorial

Files in the Tutorial... 2-1
1. Writing the Cartridge IDL File ... 2-2
2. Creating the Implementation Object .. 2-3
3. Creating the Deployment Descriptor File.. 2-5
4. Deploying the Application ... 2-6
5. Creating the Client Program ... 2-8
6. Creating the Client Executable... 2-11
7. Running the Client to Access the C++ Application ... 2-12
iii

3 Developing C++ Cartridges

Cartridge Remote Interface ... 3-1
C++ Implementation Object ... 3-2

oas::cpp::Object Base Class .. 3-3
oas::cpp::Context Object... 3-4

Logging ... 3-4
Overview.. 3-4
Example.. 3-5

Transactions.. 3-7
Overview.. 3-7
Example.. 3-7

Cartridge Environment .. 3-8
Overview.. 3-9
Example.. 3-9

Stateful and Stateless Cartridges ... 3-10
Stateful Cartridges .. 3-11
Stateless Cartridges .. 3-12

4 Creating the Deployment Descriptor File

Overview... 4-1
Structure of the Deployment Descriptor File .. 4-1

Application Section... 4-2
Cartridge Section .. 4-3

5 Developing Clients for C++ Applications

Overview... 5-1
Client Side Object Request Broker (ORB) ... 5-2
Getting the Object Reference for a C++ Object .. 5-2

The Naming Tree .. 5-2
Bootstrapping .. 5-4

Using the C++ Cartridge.. 5-6
Invoking Methods on the C++ object... 5-6
Destroying the C++ object ... 5-6

Security ... 5-7
iv

Example... 5-7

6 Installing C++ Applications

Deploying Applications .. 6-1
Generating Stubs and Skeletons ... 6-2
Generating C++ Cartridge Factories.. 6-2
Creating the Shared Library.. 6-2
Installing the Application.. 6-4

Creating Client Executables.. 6-4
Generating Stubs of the Standard CosNaming Interface.. 6-4
Compiling and Linking the Client Program... 6-5

Using the Utilities... 6-5
The IDL C++ Compiler .. 6-5
The cppgen Utility .. 6-9
The cppinstaller Utility .. 6-9

Location of Your Registered C++ Application .. 6-9
Reinstalling and Reloading Applications.. 6-10

Reinstalling C++ Applications from the Command-Line .. 6-11
Configuring C++ Applications on Remote Nodes ... 6-12
Debugging Applications ... 6-13

The Logger Class .. 6-13
Log Files ... 6-13
Severity Levels .. 6-13
Logging Modes ... 6-14
Troubleshooting Tips ... 6-15

7 Reference

Index
v

vi

Preface

Audience
The C++ CORBA cartridge defines a component architecture for building distrib-
uted object-oriented business applications in the C++ programming language. This
book is for people who develop applications using the C++ CORBA cartridge of
Oracle Application Server Release 4.0. It addresses the development, deployment,
and runtime aspects of an application development lifecycle.

The Oracle Application Server Documentation Set
This table lists the Oracle Application Server documentation set.

Title of Book Part No.

Oracle Application Server 4.0.8 Documentation Set A66971-03

Oracle Application Server Overview and Glossary A60115-03

Oracle Application Server Installation Guide for Sun SPARC Solaris 2.x A58755-03

Oracle Application Server Installation Guide for Windows NT A58756-03

Oracle Application Server Administration Guide A60172-03

Oracle Application Server Security Guide A60116-03

Oracle Application Server Performance and Tuning Guide A60120-03

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications A66958-02

Oracle Application Server Developer’s Guide: JServlet Applications A73043-01

Oracle Application Server Developer’s Guide: LiveHTML and Perl Applications A66960-02

Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applications A69966-01
 vii

Conventions
This table lists the typographical conventions used in this manual.

The term “Oracle Server” refers to the database server product from Oracle Corpo-
ration.

Oracle Application Server Developer’s Guide: C++ CORBA Applications A70039-01

Oracle Application Server PL/SQL Web Toolkit Reference A60123-03

Oracle Application Server PL/SQL Web Toolkit Quick Reference A60119-03

Oracle Application Server JServlet Toolkit Reference A73045-01

Oracle Application Server JServlet Toolkit Quick Reference A73044-01

Oracle Application Server Cartridge Management Framework A58703-03

Oracle Application Server 4.0.8.1 Release Notes A66106-04

Convention Example Explanation

bold oas.h
owsctl
wrbcfg
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this place
holder with a specific value or string.

courier owsctl start wrb Text to be entered exactly as it appears. Also
used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each sep-
arated by a vertical bar (|), any one option
can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Title of Book Part No.
viii

The term “oracle” refers to an executable or account by that name.

The term “oracle” refers to the owner of the Oracle software.

Technical Support Information
Oracle Global Support can be reached at the following numbers:

■ In the USA: Telephone: 1.650.506.1500

■ In Europe: Telephone: +44 1344 860160

■ In Asia-Pacific: Telephone: +61. 3 9246 0400

Please prepare the following information before you call, using this page as a check-
list:

❏ your CSI number (if applicable) or full contact details, including any special
project information

❏ the complete release numbers of the Oracle Application Server and associated
products

❏ the operating system name and version number

❏ details of error codes and numbers and descriptions. Please write these down
as they occur. They are critical in helping WWCS to quickly resolve your prob-
lem.

❏ a full description of the issue, including:

■ What - What happened? For example, the command used and its result.

■ When -When did it happen? For example, during peak system load, or
after a certain command, or after an operating system upgrade.

■ Where -Where did it happen? For example, on a particular system or
within a certain procedure or table.

■ Extent - What is the extent of the problem? For example, production sys-
tem unavailable, or moderate impact but increasing with time, or minimal
impact and stable.

❏ Keep copies of any trace files, core dumps, and redo log files recorded at or
near the time of the incident. WWCS may need these to further investigate
your problem. For a list of trace and log files, see “Configuration and Log Files”
in the Administration Guide.
ix

For installation-related problems, please have the following additional information
available:

❏ listings of the contents of $ORACLE_HOME (Unix) or %ORACLE_HOME%
(NT) and any staging area, if used.

❏ installation logs (install.log, sql.log, make.log, and os.log) typically stored in
the $ORACLE_HOME/orainst (Unix) or %ORACLE_HOME%\orainst (NT)
directory.

Documentation Sales and Client Relations
In the United States:

■ To order hardcopy documentation, call Documentation Sales: 1.800.252.0303.

■ For shipping inquiries, product exchanges, or returns, call Client Relations:
1.650.506.1500.

In the United Kingdom:

■ To order hardcopy documentation, call Oracle Direct Response:
+44 990 332200.

■ For shipping inquiries and upgrade requests, call Customer Relations:
+44 990 622300.
x

Reader’s Comment Form

Oracle Application Server Developer’s Guide: C++ CORBA Applications
Part No. A70039-01

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the
topic, chapter, and page number below:

Please send your comments to:

Oracle Application Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

If you would like a reply, please provide your name, address, and telephone num-
ber below:

Thank you for helping us improve our documentation.
xi

xii

1

Overview

The C++ CORBA cartridge defines a component architecture for building distrib-
uted object-oriented business applications in the C++ programming language. It
addresses the development, deployment, and runtime aspects of application devel-
opment. The C++ CORBA cartridge makes it easy for application developers to
write applications. The cartridge runtime shields the developers from low-level
details of transactions, multi-threading, resource pooling, etc.

Contents
■ A Component Based Application Model

■ Terminology

■ Client View of the C++ CORBA Cartridge

■ Container Architecture

■ Application Development: General CORBA vs. C++ CORBA Cartridge

■ Using C++ Cartridge in an N-tier Computing Model

A Component Based Application Model
Oracle Application Server supports a component-based application model in the
form of the C++ CORBA cartridge applications, Enterprise CORBA Object (ECO)
for Java applications, and Enterprise JavaBeans (EJB) applications.

The C++ CORBA cartridges are created and managed at runtime by the C++
CORBA cartridge container, which is provided by Oracle Application Server. The
characteristics of the cartridge, such as timeout values, state, etc. are customized at
the time of deploying the application. A consistent view of the cartridge is given to
Overview 1-1

Terminology
the client regardless of how the C++ cartridge is implemented and what functions
it provides to the client.

In the Oracle Application Server environment, a C++ application consists of one or
more C++ cartridges. C++ cartridges typically provide the business logic in C++
applications. The cartridges define methods that clients can invoke to perform
some operation.

Terminology
This section defines the different entities that exist within the C++ CORBA car-
tridge world.The rest of the Guide uses this terminology:

■ Container: Container is the C++ CORBA cartridge’s runtime. This container
provides security, concurrency, transactions, and other services to the C++
object. The implementations of these services are transparent to the client. The
container itself lives in the cartridge server process of Oracle Application
Server.

■ C++ application and C++ cartridge: C++ application and C++ cartridge are
named entities in your Oracle Application Server installation. A C++ applica-
tion contains one or more C++ cartridges. A C++ cartridge consists of the busi-
ness logic code that you write. All cartridges belonging to an application are
packaged as a single module (shared object/DLL).

■ C++ object: The same meaning as a “CORBA object” defined by the OMG spec-
ifications. It is virtual entity capable of being located by an ORB and having cli-
ent requests invoked on it. It is “virtual” because it does not really exist until
made real by an implementation written in a programming language.

A C++ object is an instance of a C++ cartridge. Each C++ object has an object
reference. A client uses this object reference to invoke methods on the C++
object.The C++ object lives inside a container from the time of its creation to the
time of its destruction.

■ C++ implementation object: The same meaning as a “servant” defined by the
OMG specifications. A C++ implementation object incarnates C++ objects: they
provide bodies, or implementations, for C++ objects. C++ implementation
objects exist within the context of a server process.

Note: Throughout this Guide the terms C++ CORBA application
and C++ CORBA cartridge have been used interchangeably with
the terms C++ application and C++ cartridge respectively.
1-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Client View of the C++ CORBA Cartridge
C++ implementation objects are instances of the C++ implementation class that
you write.

See Oracle Application Server Administration Guide for more on cartridge servers and
the architecture of Oracle Application Server.

Client View of the C++ CORBA Cartridge
The container for the C++ CORBA cartridge provides security, concurrency, transac-
tions, and other services to the C++ object. The implementations of these services
are transparent to the client. Figure 1–1 shows the client view of the C++ CORBA
cartridge.

Figure 1–1 Client view of the C++ CORBA cartridge

A client accesses the C++ cartridge using the standard CORBA CosNaming service
as defined by the OMG (http://www.omg.org) COSS specification. The container
binds the application and cartridge names into a CosNaming tree, which is used by
the client to obtain the object reference to a C++ object.

The client uses the application name and the cartridge name to resolve the object
reference for the C++ object. The following code snippted is an example of a client
accessing a C++ cartridge. The client is accessing the cartridge Account in the Bank
application:

Client

C++
Object

Container

Cartridge Server

Object
Reference

Request

C++
Impl.

Object
Overview 1-3

Container Architecture
CosNaming::Name name;
name.length(2);
name[0].id = CORBA::string_dup("Bank");
name[1].id = CORBA::string_dup("Account");

try
{

CORBA::Object_ptr cpp = inc->resolve(name);
if (CORBA::is_nil(cpp))
{

cerr << "Error resolving Bank/Account" << endl;
exit(1);

}
}
catch (CORBA::SystemException& se)
{

cerr << "Error: " << se._repository_id() << endl;
return 1;

}

The Oracle Application Server naming tree consists of C++ applications and car-
tridges deployed in Oracle Application Server. When you deploy new applications
or cartridges in Oracle Application Server, they are added to this naming tree. The
client’s CosNaming name space is populated by the C++ CORBA cartridge con-
tainer. Java clients can use JNDI to access a C++ cartridge.

See Chapter 5, “Developing Clients for C++ Applications” for details.

Container Architecture
The C++ CORBA cartridge container is the runtime that manages the lifecycle (cre-
ation and destruction) of C++ objects. The container is implemented on a portable
object adapter (POA) based C++ ORB. It provides the following services to C++
objects:

■ Lifecycle

■ Transactions

■ Load Balancing

■ Security

■ Resource Pooling (Stateful/Stateless C++ Cartridges)
1-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Container Architecture
The container creates a Context object for every C++ object. The Context object
makes the container services available to the C++ implementation object.

Lifecycle
The container invokes lifecycle methods (Create and Remove) to the C++ imple-
mentation object. The following sequence of steps takes place when a client invokes
business methods on a C++ object:

1. The client calls a resolve() or secure_resolve() on the root naming con-
text of the naming tree to get the object reference of the C++ object.

2. The Oracle Application Server daemon creates a cartridge server process and
instantiates the C++ object and the C++ implementation object.

3. The container creates a Context object and invokes lifecycle methods on the
C++ implementation object.

4. The container returns the object reference of the C++ object to the client.

5. The client invokes business methods on the object reference. The container dele-
gates these methods to the C++ implementation object.

6. The container destroys the C++ object when the client invokes a business
method that calls the remove method on the Context object, or when the C++
object’s timeout expires.

Transactions
The C++ implementation object can use the Context object to access the UserTrans-
action object. The UserTransaction object allows the implementation object to
begin, commit, and rollback transactions. The container supports distributed trans-
actions across address spaces and across multiple Oracle databases. See Chapter 3,
“Developing C++ Cartridges” for more on using transactions.

Load Balancing
The container makes sure that there are enough threads to invoke methods on the
C++ object. The container allocates resources based on two types of load balancing
modes: priority based and min/max. You can configure your C++ application to
select any of these two modes.

In the priority mode, the number of threads to execute methods on C++ objects will
depend on the priority of the C++ application. In the min/max mode, as many
threads as required by the application are created by the container. User threads
Overview 1-5

Application Development: General CORBA vs. C++ CORBA Cartridge
can also be created by the C++ object for dealing with the load balancing needs of
the application. (We do not recommend this method.)

See Oracle Application Server Performance and Tuning Guide for more on how to con-
figure your application to use priority based or min/max load balancing.

Security
The container can protect C++ objects by requiring that clients authenticate them-
selves before it instantiates a C++ object. See Chapter 5, “Developing Clients for
C++ Applications” and the Oracle Application Server Security Guide.

Resource Pooling (Stateful/Stateless C++ Cartridges)
In a stateful C++ cartridge, the C++ implementation object contains conversational
state, which is retained across method invocations. In a stateless C++ cartridge, the
implementation object is shared. It does not contain any conversational state across
method invocations. Thus, the instance can be used by any client.

Use stateful cartridges if you want the same state across multiple requests associ-
ated with a client. Use stateless cartridges if you do not want a conversational state
associated with C++ objects, but want a light-weight application. Since stateless car-
tridges are shared, they are more efficient and scalable.

See Chapter 3, “Developing C++ Cartridges” for more on stateful and stateless C++
cartridges.

Application Development: General CORBA vs. C++ CORBA Cartridge
General CORBA applications are different from C++ CORBA cartridge applications
in terms of the development process. The CORBA application development process
consists of the following six steps:

1. Determine your application’s objects and define their interfaces in IDL.

2. Compile your IDL definitions into C++ stubs and skeletons.

3. Declare and implement C++ servant classes that can incarnate your CORBA
objects.

4. Write a server main program.

5. Compile and link your server implementation files with the generated stubs
and skeletons to create your server executable.

6. Write, compile, and link your client code together with the generated stubs.
1-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Using C++ Cartridge in an N-tier Computing Model
With the C++ CORBA cartridge you get the advantage of features provided by the
Oracle Application Server that simplifies the development process. You donot have
to write a server program, as specified in step 4. The container provides you with
the services that a server would provide in a general CORBA application.

Table 1–1 compares the steps involved in the development of these two types of
applications.

Using C++ Cartridge in an N-tier Computing Model
Oracle Application Server provides the framework for an N-tier computing model.
In an N-tier computing model, HTTP or IIOP clients form the first tier. The middle
tier consists of various components, which provide presentation logic or business
logic. The last tier is the database. This model offers a variety of communication
paths between the client and the database depending on business requirements.
Some of these communication paths are highlighted in Figure 1–2.

Table 1–1 General CORBA vs. C++ CORBA cartridge application development

Step CORBA Application Development
C++ CORBA Cartridge Application
Development

1 Determine application’s objects
and define their IDL interfaces.

Determine application’s objects and
define their IDL interfaces.

2 Compile the IDL into C++ stubs
and skeletons.

Compile the IDL into C++ stubs and
skeletons.

3 Declare and implement C++ ser-
vant classes for your CORBA
objects.

Declare and implement C++ imple-
mentation objects for your C++ objects.

4 Write a server main program. Managed by container.

5 Create the server executable. Create the server module using cpp-
gen and cppinstaller.

6 Write, compile, and link the client
code with the generated stubs.

Write, compile, and link the client
code with the generated stubs.
Overview 1-7

Using C++ Cartridge in an N-tier Computing Model
Figure 1–2 N-tier computing model

The numbers in Figure 1–2 are explained as follows:

1. A JServlet cartridge can access a C++ CORBA cartridge using JNDI over Cos-
Naming (SPI).

2. A C++ CORBA client can access an ECO/Java application using IIOP.

3. A Java CORBA client can access a C++ CORBA cartridge using IIOP.

JServlet
EJB

ECO/Java

C++ CORBA
cartx

cartx

Presentation logic
Business logic

Database

JDBC

JDBC

OCI

Oracle Application Server

HTTP

IIOP

IIOP

Browser

C++
CORBA
client

client

Java
CORBA
client

IIOP

IIOP

IIOP

1.
2.

3.
1-8 Oracle Application Server Developer’s Guide: C++ CORBA Applications

2

Tutorial

This chapter provides a step-by-step guide on how to create a C++ application.
This includes writing the cartridge IDL files, writing the implementation object for
the cartridge, creating the deployment descriptor, and registering the application
with Oracle Application Server.

The C++ application in this tutorial is called “Bank”, and it contains one C++ car-
tridge called “Account”.

The tutorial covers the following steps:

 1. Writing the Cartridge IDL File

 2. Creating the Implementation Object

 3. Creating the Deployment Descriptor File

 4. Deploying the Application

 5. Creating the Client Program

 6. Creating the Client Executable

 7. Running the Client to Access the C++ Application

Files in the Tutorial
Create a directory structure as shown in Figure 2–1 to contain the files for the tuto-
rial. The number beside each file indicates the step in which the file will be created.
Tutorial 2-1

1. Writing the Cartridge IDL File
Figure 2–1 Directory structure for the tutorial

1. Writing the Cartridge IDL File
Create the following IDL file and save it as Bank.idl in the server directory.

//Bank Application
module Bank
{

 interface Account
 {
 short getBalance();
 void deposit(in short amount);
 void destroy();
 }

}

The IDL file contains the remote interfaces for all the cartridges in the C++ applica-
tion. In Bank.idl the module Bank has an interface Account. The Account interface
is implemented as a C++ cartridge.

Note: This tutorial pertains only to deploying your application on
the primary node of an Oracle Application Server site. For informa-
tion on deploying your application on a secondary node, see
Chapter 6, “Installing C++ Applications”

Bank

server client

AccountImpl.cpp (2)
AccountImpl.h (2)
Bank.idl (1)
CPP.app (3)

client.cpp (5)
2-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

2. Creating the Implementation Object
2. Creating the Implementation Object
Save the following program as AccountImpl.h in the server directory:

#ifndef ACCOUNTIMPL_H
define ACCOUNTIMPL_H

#ifndef CPP_ORACLE
include <cpp.h>
#endif

/**
 * C++ Object Bank::Account implementation. The implementation is required
 * to extend the oas::cpp::Object base class
 */
class AccountImpl : public oas::cpp::Object
{
private:

 short m_balance;
 oas::cpp::Context* m_ctx;

public:
 AccountImpl() {}

 /* Implementation of the oas::cpp::Object methods. */
 void setContext(oas::cpp::Context* ctx);
 void cppCreate();
 void cppRemove();

 /* Implementation of the Bank::Account interface */
 short getBalance();
 void deposit(short amount);
 void destroy();

};

#endif

Note: You can define the remote interfaces in multiple IDL files,
but the application IDL file must include these individual IDL files.
Tutorial 2-3

2. Creating the Implementation Object
Create the following program and save it as AccountImpl.cpp in the server direc-
tory. This program is the C++ implementation object and must implement the
oas::cpp::Object abstract base class provided by Oracle Application Server.

#ifndef ACCOUNT_H
include <AccountImpl.h>
#endif

/**
 * The setContext method is invoked by the C++ cartridge container
 * with the object context for the specific cartridge instance
 *
 * @param IN oas::cpp::Context The context specific to the C++ object
 */
void AccountImpl::setContext(oas::cpp::Context* ctx)
{

 m_ctx = ctx;
}

/**
 * The instance specific initialization should be done in cppCreate.
 * If the instance initialization fails, the method is required to
 * log the failure and throw oas::cpp::CreateException.
 */
void AccountImpl::cppCreate()
{

 oas::cpp::Logger& log = m_ctx->getLogger();
 m_balance = 100;
 log << "Account instance created with initial balance of "
 << m_balance << "\n";

}

/**
 * The instance specific cleanup should be done here.
 */
void AccountImpl::cppRemove()
{

 oas::cpp::Logger& log = m_ctx->getLogger();

 m_balance = 0;
 log << "Account instance being destroyed\n";

}

/**
 * Bank::Account::getBalance implementation.
2-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

3. Creating the Deployment Descriptor File
 */
CORBA::Short AccountImpl::getBalance()
{

 oas::cpp::Logger& log = m_ctx->getLogger();

 log << "get Balance called returning "
 << m_balance << "\n";
 return m_balance;

}

/**
 * Bank::Account::deposit implementation
 */
void AccountImpl::deposit(CORBA::Short amount)
{

 oas::cpp::Logger& log = m_ctx->getLogger();

 log << "deposit called\n";
 m_balance = m_balance + amount;
 log << "new amount: " << m_balance << "\n";

}

/**
 * Bank::Account::destroy implementation
 */
void AccountImpl::destroy()
{

 oas::cpp::Logger& log = m_ctx->getLogger();

 log << "remove called\n";
 m_ctx->remove();

}

3. Creating the Deployment Descriptor File
The deployment descriptor file is a text file called CPP.app, and it contains informa-
tion used by the Oracle Application Server Manager to register C++ applications to
Oracle Application Server.

The file contains information such as the name of the application, the cartridges in
the application, and the names of the remote interface classes.

Create the following CPP.app file in the server directory:

[APPLICATION]
Tutorial 2-5

4. Deploying the Application
name=Bank
transactions=Disabled

[Account]
stateless=false
remoteInterface=Bank::Account
implementationClass=AccountImpl
implementationHeader=AccountImpl.h

In one application, two or more cartridges cannot have the same name. See
Chapter 4, “Creating the Deployment Descriptor File” for more on creating deploy-
ment descriptor files.

4. Deploying the Application

To deploy your C++ cartridge application on an Oracle Application Server site, you
will need to complete the following steps in the server directory:

1. Generate stubs and skeletons for your IDL file.

Use the following command to run the IDL C++ compiler (oasoidlc) to gener-
ate C++ stubs and skeletons for Bank.idl:

prompt>$ORACLE_HOME/orb/4.0/bin/oasoidlc -g cplus -I $ORACLE_HOME/orb/4.0/
public -I $ORAWEB_HOME/cpp/public -I . -A "oasoidlc.c-cplus-kwd=true"
Bank.idl

2. Generate the C++ cartridge factories.

You use the utility cppgen to create C++ cartridge factories. Use the following
command to create the instance factories for each of the cartridges in the appli-
cation:

prompt>$ORAWEB_HOME/bin/cppgen -o . -a CPP.app -i Bank.idl

Note: Make sure that your environment variable
$ORACLE_HOME and $ORAWEB_HOME are properly set. See
Oracle Application Server Installation Guide for details.
2-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

4. Deploying the Application
3. Create and link the cartridge shared library.

Create the application shared library (Bank.so for Solaris) by linking in the
object files BankS.o, BankC.o, BankW.o, BankT.o; and the cartridge implemen-
tation file AccountImpl.o. For example:

prompt>CC -c -Kpic -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/
public -I$ORACLE_HOME/ys/pub -o BankS.o BankS.cpp

prompt>CC -c -Kpic -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/
public -I$ORACLE_HOME/ys/pub -o BankC.o BankC.cpp

prompt>CC -c -Kpic -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/
public -I$ORACLE_HOME/ys/pub -o BankW.o BankW.cpp

prompt>CC -c -Kpic -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/
public -I$ORACLE_HOME/ys/pub -o BankT.o BankT.cpp

prompt>CC -c -Kpic -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/
public -I$ORACLE_HOME/ys/pub -o AccountImpl.o AccountImpl.cpp

prompt>CC -G -o Bank.so BankS.o BankC.o BankW.o BankT.o AccountImpl.o -
L$ORAWEB_HOME/cpp/lib -lwrcc -lCstd -lCrun

4. Install the application on the Oracle Application Server site.

Use the following command to install the application shared library on the Ora-
cle Application Server site:

prompt> $ORAWEB_HOME/bin/cppinstaller -f -a CPP.app -l Bank.so

This command registers your application with the Oracle Application Server
Site Manager.

See Chapter 6, “Installing C++ Applications” for detailed explanations of the above
mentioned steps.

Note: For Solaris, you need C++ compiler version 5.0.
Tutorial 2-7

5. Creating the Client Program
5. Creating the Client Program
Create the following program and save it as client.cpp in the client directory. This
program is the client code for accessing the C++ cartridge. The client uses CosNam-
ing to access the C++ cartridge.

#ifndef CPP_ORACLE
#include <cpp.h>
#endif

#include <cosnamC.h>
#include <BankC.h>

int
main (int argc, char **argv)
{

CORBA::ORB_var the_orb = CORBA::ORB_init(argc, argv);

long i = 0;
CosNaming::NamingContext_var rootNC_var = NULL;

if (argc < 2)
{

cout << "Usage: " << argv[0] << " <oas://<host>:<port>" << endl;
exit (1);

}

// Obtain the IOR for the root naming context using the
// C++ cartridge Name Service boot strap mechanism. A stringified
// object reference of the root naming context is returned
// by the NSBootStrap object
try
{

const char* rootNCobj_ior = NULL;
CORBA::Object_ptr rootNCobj_ptr = NULL;

CosNaming::NamingContext_ptr rootNC_ptr = NULL;

rootNCobj_ior = oas::cpp::NSBootStrap::getOASRootNamingContext
(argv[1]);
rootNCobj_ptr = CORBA::ORB::string_to_object(rootNCobj_ior);
oas::cpp::NSBootStrap::freeIOR (rootNCobj_ior);
2-8 Oracle Application Server Developer’s Guide: C++ CORBA Applications

5. Creating the Client Program
rootNC_ptr = CosNaming::NamingContext::_narrow(rootNCobj_ptr);
if (CORBA::is_nil(rootNC_ptr))
{

cerr << "Error obtaining root naming context!" << endl;
exit(1);

}

rootNC_var = rootNC_ptr;
}
catch (oas::cpp::URLFormatException &e)
{

cerr << "Invalid URL format: " << argv[1] << endl;
cerr << "Not understood from: " << e.getMessage() << endl;
exit(1);

}
catch (oas::cpp::ListenerException &e)
{

cerr << "Listener Error: Check if listener is running" << endl;
exit(1);

}
catch (oas::cpp::OutOfFileDescriptorsException &e)
{

cerr << "No more file descriptors" << endl;
exit(1);

}
catch (oas::cpp::UnknownAddressException &e)
{

cerr << "Address not known" << endl;
exit(1);

}
catch (oas::cpp::ConnectionFailedException &e)
{

cerr << "Connection failed. Try later" << endl;
exit(1);

}
catch (oas::cpp::IOException &e)
{

cerr << "IO Exception" << endl;
exit(1);

}
catch (oas::cpp::InternalErrorException &e)
{

cerr << "Internal error received: " << e.getMessage() << endl;
exit(1);

}

Tutorial 2-9

5. Creating the Client Program
catch (oas::cpp::Exception &e)
{

cerr << "Unknown error received: " << e.getMessage() << endl;
exit(1);

}
catch (...)
{

cerr << "Unknown error obtaining root naming context" << endl;
exit(1);

}

// Create a CosNaming name object to access the c++ cartridge instance
CosNaming::Name name;
name.length(2);
name[0].id = CORBA::string_dup("Bank");
name[1].id = CORBA::string_dup("Account");

try
{

CORBA::Object_ptr cppobj_ptr = rootNC_var->resolve(name);
if (CORBA::is_nil(cppobj_ptr))
{

cerr << "Error resolving Bank/Account" << endl;
exit(1);

}

cout << "c++ object : " << cppobj_ptr << endl;
Bank::Account_ptr account_ptr = Bank::Account::_narrow(cppobj_ptr);
if (CORBA::is_nil(account_ptr))
{

cerr << "Error narrowing Account instance" << endl;
exit(1);

}

//Get the smart var ptr for automatic release
Bank::Account_var account_var = account_ptr;
cout << "Balance: " << account_var->getBalance() << endl;
account_var->deposit(100);
cout << "Deposting: 100 bucks... " << endl;
cout << "New balance: " << account_var->getBalance() << endl;
account_var->destroy();

}

2-10 Oracle Application Server Developer’s Guide: C++ CORBA Applications

6. Creating the Client Executable
catch (CORBA::SystemException& se)
{

cerr << "Error: " << se._repository_id() << endl;
return 1;

 }
 catch (...)
 {

 cerr << "Unknown error" << endl;
 return 1;

 }

return 0;
}

6. Creating the Client Executable
To create your client executable, you will need to complete the following steps in
the client directory:

1. Generate stubs of the standard CosNaming interface.

Use the following command to run the IDL C++ compiler (oasoidlc):

prompt>$ORACLE_HOME/orb/4.0/bin/oasoidlc -g cplus -A "oasoidlc.c-cplus-
kwd=true" $ORACLE_HOME/orb/4.0/public/cosnam.idl

2. Compile and link the client program with the required libraries and runtime
files.

For Solaris:

$CC -c -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/public -
I$ORACLE_HOME/ys/pub -I../server -o client.o client.cpp

$CC -c -g -I$ORAWEB_HOME/cpp/public -I. -I$ORACLE_HOME/orb/4.0/public -
I$ORACLE_HOME/ys/pub -I../server -o cosnamC.o cosnamC.cpp

$CC -o client client.o ../server/BankC.o cosnamC.o $ORACLE_HOME/orb/4.0/lib/
liborb.so $ORACLE_HOME/orb/4.0/lib/libyop.so $ORAWEB_HOME/cpp/lib/
libcppcl.so -lthread -lsocket

See Chapter 6, “Installing C++ Applications” for detailed explanations of the above
mentioned steps.
Tutorial 2-11

7. Running the Client to Access the C++ Application
7. Running the Client to Access the C++ Application
Reload the Oracle Application Server site as follows:

prompt> owsctl start
(If Oracle Application Server is not running.)

or,

prompt> owsctl reload -w all
(If Oracle Application Server is already running.)

Note that every time you register a new application with an Oracle Application
Server site, you should reload the application server using the above command.

Run the client program by giving the following command:

prompt> client oas://host-name:port

where,

■ host-name is the name of the machine on which Oracle Application Server is
running.

■ port is the port at which the Web listener is listening.

The client does a CosNaming resolve() and acquires the object reference of the
C++ implementation object. The Account methods are now invoked on the
instance. Finally, the client invokes the destroy() method to destroy the cartridge
instance.

Here is a sample run:

prompt> client oas://isp-sun13.us.oracle.com:80

Balance: 100
Deposting: 100 bucks...
New balance: 200
2-12 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Developing C++
3

Developing C++ Cartridges

To develop a C++ cartridge, you need to create the cartridge remote interface and
the C++ implementation object. This chapter describes how to create these two enti-
ties.

Contents
■ Cartridge Remote Interface

■ C++ Implementation Object

■ Logging

■ Transactions

■ Cartridge Environment

■ Stateful and Stateless Cartridges

Cartridge Remote Interface
Once you complete the design phase of your application and identify all objects,
you need to map all the objects to C++ cartridges. This section gives some guide-
lines for mapping the objects to C++ cartridges.

You create a cartridge remote interface for your application using interface defini-
tion language (IDL) as specified in CORBA specification 2.2. This IDL file defines
the cartridge remote interface of your application. A module in this IDL file corre-
sponds to your C++ application. Each interface in a module maps to a C++ car-
tridge. A client acquires the object reference of a C++ object by specifying the
application and cartridge names.

Note that you need to have a single IDL file for one application.
 Cartridges 3-1

C++ Implementation Object
Following is an example of an IDL file that defines the remote interface for the car-
tridge Employee in an application called HR:

module HR
{

exception DBError
{

string errmesg;
};

struct EmployeeRecord
{

short id;
string name;
string job;

};

interface Employee
{

EmployeeRecord getEmployeeRecord(in short id)
raises (DBError);

void updateEmployeeRecord(in short id, in EmployeeRecord rec)
raises (DBError);

void destroy();
};

};

The remote interface for the cartridge Employee has the following C++ methods:

■ getEmployeeRecord()

■ updateEmployeeRecord()

■ destroy()

The implementation of these methods is provided by the C++ implementation
objects.

C++ Implementation Object
For each interface defined in the cartridge remote interface, you should provide a
C++ implementation object. The C++ implementation object implements the busi-
ness logic of the C++ cartridge. In other words, the C++ implementation object is
3-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

C++ Implementation Object
the C++ code that you write on the server side. The remote calls from the client are
delegated to this object.

Oracle Application Server provides oas::cpp::Object Base Class and oas::cpp::Con-
text Object as the basic classes for developing C++ applications. See Chapter 7,
“Reference” for a description of all available classes.

oas::cpp::Object Base Class
Each C++ implementation object should inherit the base class
oas::cpp::Object and implement the following methods:

■ setContext() : The container invokes this method on the C++ implementa-
tion object and passes along the instance specific context to this object.

■ cppCreate() : The container invokes this method on the implementation
object after the setContext() is called. Implementation object specific initial-
ization should be done here. The logger object is available for logging at this
stage. If an error occurs in initializing, the implementation object can throw
oas::cpp::CreateException exception. When this exception is thrown,
the container destroys the implementation object.

■ cppRemove() : The container invokes this method on the C++ object before it
deletes the implementation object. Instance specific garbage collection should
be done here. The implementation object can be removed for two reasons:

■ The implementation object has timed out. See Chapter 4, “Creating the
Deployment Descriptor File” for more on the timeout parameter associated
with a C++ cartridge.

■ The remove() method was invoked on the oas::cpp::Context object.

The following code snippet shows how to use the above mentioned methods:

class EmployeeImpl : public oas::cpp::Object
{
public:

EmployeeImpl() {};
virtual ~EmployeeImpl() {};

virtual HR::EmployeeRecord* getEmployeeRecord(int id);
virtual void updateEmployeeRecord(int id, HR::EmployeeRecord_out rec);

void setContext(oas::cpp::Context* ctx)
{

_ctx = ctx;
Developing C++ Cartridges 3-3

Logging
}

void cppCreate();
void cppRemove();
void destroy()
{

if (_ctx != NULL)
_ctx->remove();

}
private:

oas::cpp::Context* _ctx;
boolean _success;
DbUtil* _dbUtil;

};

The C++ implementation object should also implement all the business logic meth-
ods. The signatures for these methods should match with those of the C++ map-
ping of the remote interface (the IDL file) of the cartridge.

oas::cpp::Context Object
The container creates a Context object for every C++ implementation object,which
provides the implementation object with access to the container services, such as
logging, transactions, and cartridge environment. The methods on the Context
object are defined as follows:

■ getLogger(): Returns a reference to the logger for this cartridge instance.

■ getUserTransaction(): Returns a user transaction object.

■ getEnvironment(): Returns the cartridge environment name value pairs.

■ getObject(): Returns the object reference for the C++ object.

■ remove(): Destroys the C++ implementation object.

Logging
The container creates a new logger instance for every C++ implementation object.
A reference to the logger can be obtained from the object context.

Overview
Each message can be logged at different severity levels. Following is the list of dif-
ferent severity levels:
3-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Logging
■ SEVERITY_FATAL: Use this severity level if a fatal error (that will result in
destroying the C++ cartridge) occurs. An example of a fatal error is failure of
the initialization of the C++ object.

■ SEVERITY_WARNING: Use this severity level for reporting warnings.

■ SEVERITY_INITTERM: Use this severity level for reporting initialization and
termination of C++ objects.

■ SEVERITY_DEFAULT: This severity level is automatically set if you do not set
any severity level.

■ SEVERITY_TRACE: Use this severity level for debugging your C++ cartridge.

The message severity levels are numbers in the range of 0 to 15. You can set the Ora-
cle Application Server logger daemon to a specific severity level from the Oracle
Application Server Manager. All the messages whose severity is lesser in value
than that set on the logger daemon are logged. By default, error messages rae
logged to the log file. You can change the location of the log file for your applica-
tion using the Oracle Application Server Manager. See Oracle Application Server
Administration Guide for details.

The log messages are flushed to the logger daemon when a new line character \n
appears in the message buffer. The messages are also flushed when the instance is
destroyed.

Example
The following code snippted gives an example of how to use logging:

void EmployeeImpl::cppCreate()
{

oas::cpp::Logger& log = _ctx->getLogger();

_success = TRUE;
try
{

log << "Creating a new DBUtil\n"; //DBUtil is a utility class for
//creating a database connection
_dbUtil = new DbUtil("scott", "tiger", "test"); //creating OCI
// connection
log << "new DB util created\n";

}

Developing C++ Cartridges 3-5

Logging
catch (const char* e)
{

cerr << e << endl;
log << "DBUtil Error: " << e << "\n";
_success = FALSE;

}
}

void EmployeeImpl::cppRemove()
{
delete _dbUtil;
}

HR::EmployeeRecord* EmployeeImpl::getEmployeeRecord(int id)
{

oas::cpp::Logger& log = _ctx->getLogger();
Employee* e = NULL;
if (_success == FALSE)
return NULL;

try
{

log << "Getting info for employee " << id << "\n";
e = _dbUtil->getEmployee(id);
log << "Got info successfully\n";

}
catch (const char* err)
{

log << "Error! " << err << "\n"; //logging error messages
return NULL;

}

if (e != NULL)
{

HR::EmployeeRecord* er = new HR::EmployeeRecord;
er->id = e->getId();
er->name = CORBA::string_dup(e->getName());
er->job = CORBA::string_dup(e->getJob());
return er;

}

return NULL;
}

void EmployeeImpl::updateEmployeeRecord(int id, HR::EmployeeRecord_out er)
3-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Transactions
Transactions
The C++ cartridge supports distributed transactions. You can write an application
that updates data in multiple databases, distributed across multiple cartridges in a
single global transaction.

Overview
The C++ cartridge transactions are modeled after OMG’s Object Transaction Ser-
vice (OTS) 1.1 specification. For enabling transactions in your application, you will
need to configure transactional database access descriptors(DADs) and the distrib-
uted transaction coordinator (DTC). For more information, see the Oracle Applica-
tion Server Administration Guide.

You can do transaction demarcation through the UserTransaction object that is
obtained from the Context object. The UserTransaction object supports the follow-
ing methods:

■ begin() : Begins a global transaction.

■ commit() : Commits the global transaction. You should do a commit in the
same cartridge that began the transaction.

■ rollback() : Rollsback the existing active transaction.

■ getStatus() : Gets the transaction status of the C++ implementation object.

■ setTransactionTimeout() : Modifies the value of timeout that is associated
with the transaction started by the current cartridge with the begin method.

■ setRollbackOnly() : Modifies the current transaction such that the only pos-
sible outcome of the transaction is to rollback.

See Chapter 7, “Reference” for a complete description of these methods.

Example
The following code snippet is from the IDL file of an application that uses
distributed transactions:

interface Employee: CosTransaction::TransactionObject
{

EmployeeRecord getEmployeeRecord(in short id, in string url)

Note: Client-side transaction demarcation is not supported in the
C++ cartridge.
Developing C++ Cartridges 3-7

Cartridge Environment
raises (DBError);

void updateEmployeeRecord(in EmployeeRecord rec)
raises (DBError);

void destroy();
};

The following code snippet is an example of a C++ implementation object that uses
transactions:

EmployeeRecord* EmployeeImpl::getEmployeeRecord(int id)
throw (HR::DBError)
{
Employee* e = NULL;
try
{

oas::cpp::transaction::UserTransaction* ut = _ctx->getUserTransaction();
if (ut == NULL)
throw "Panic: userTransaction is null";

ut->begin();
_dbUtil = new DbUtil("JCOTEST");

cout << "Begin transaction successful" << endl;
e = _dbUtil->updateEmployee(id);
ut->commit();

cout << "Commit transaction successful" << endl;
delete _dbUtil;
_dbUtil = NULL;

}
catch (const char* err)
{

:

Cartridge Environment
You can associate name value pairs (environment parameters) with the cartridge in
the deployment descriptor file. See Chapter 4, “Creating the Deployment Descrip-
tor File”. After you deploy the application, these name value pairs can be custom-
ized through the Oracle Application Server Manager.
3-8 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Cartridge Environment
Overview
The oas::cpp::Environment class provides a C++ implementation object with
access to the C++ cartridge's environment parameters. The cartridge can either look
for a particular parameter name and get its value using the getParameter-
ByName() method, or get all the configured parameters using an index via the
gettParameterByIndex() and getNameByIndex() methods. See Chapter 7,
“Reference” for details.

Example
void EnvironmentImpl::cppCreate()
{

oas::cpp::Logger& log = _ctx->getLogger();
log << "In cppCreate\n";

_env = _ctx->getEnvironment();
_numEnv = _env->length();

log << "Num Env: " << _numEnv << "\n";
}

char* EnvironmentImpl::getEnvironmentAt(CORBA::Short index)
{

oas::cpp::Logger& log = _ctx->getLogger();

if (index >= _numEnv)
return NULL;

const char *name = _env->getNameByIndex(index);
const char *value = _env->getParameterByIndex(index);

int length = strlen (name) +
strlen (value) +
1; // the plus 1 is for the '=' character
char *retval = CORBA::string_alloc (length);
char *retval1 = retval;

while (*name)
{

*retval1++ = *name++;
}
*retval1++ = '=';
Developing C++ Cartridges 3-9

Stateful and Stateless Cartridges
while (*value)
{

*retval1++ = *value++;
}
*retval1++ = 0;

return retval;
}
:

Stateful and Stateless Cartridges
You can specify C++ cartridges as Stateful Cartridges or Stateless Cartridges in the
C++ application deployment descriptor file. By default a C++ cartridge is stateful.
Figure 3–1 describes the container architecture.

Figure 3–1 Stateful and stateless cartridges

root
naming

cartridge A
(stateful)

oid 1
oid 2
oid 3

C++ implementation

(stateless)

oid 1
oid 2
oid 3

cartridge B

oid 4
oid 5

container

context

object

C++ implementation
object

C++ implementation
object

C++ implementation
object

C++ implementation
object

C++ implementation
object
3-10 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Stateful and Stateless Cartridges
Stateful Cartridges
In a stateful cartridge one C++ implementation object (which is an instance of the
C++ implementation class that you write) is created every time a client invokes a
resolve() method on the leaf node of the naming tree. (See Chapter 1, “Over-
view” for more on the naming tree.) The C++ implementation object is tied to the
client until the remove() method is invoked on the Context object or the imple-
mentation object’s timesout.

In a stateful cartridge the C++ implementation object is bound to an object id (oid).
See Figure 3–1. Stateful cartridges allow a client to create a conversational state
associated with a C++ implementation object, which is retained as long as the
implementation object is alive. However, this comes with an associated cost since a
new C++ implementation object is created for each client. Figure 3–2 shows the
sequence diagram for stateful C++ cartridges.

Figure 3–2 Sequence diagram for stateful C++ cartridges

C

Oracle Application ServerClient

Container C++ object
Context

C++

resolve()

business method

new

new

new

setContext()

cppCreate()

delegates business method

1.

2.

3.

4.

5.

6.7.

8.

9.

implementation
object
Developing C++ Cartridges 3-11

Stateful and Stateless Cartridges
The numbers in Figure 3–2 are explained as follows:

1. The client does a CosNaming resolve() to obtain the object reference to a
C++ object.

2. The container creates an instance of the C++ object.

3. A new Context object is created.

4. A C++ implementation object is instantiated for this C++ object.

5. The container invokes setContext() on the implementation bject.

6. The container invokes cppCreate() .

7. The object reference for the C++ object is returned to the client.

8. The client invokes a business method on the C++ object.

9. The C++ object delegates the business method to the implementation object,
which returns the result to the client.

Stateless Cartridges
A C++ cartridge can also be declared stateless. Thus, a client cannot associate con-
versational state with the C++ implementation object. The container creates a pool
of stateless implementation objects on demand. When the client invokes
resolve() to obtain a stateless cartridge, only a reference is created to the C++
cartridge. When a method is invoked on this reference, the container assigns an
implementation object from the pool (Figure 3–1), or creates a new instance of the
implementation object.

Stateless cartridges allow for building scalable servers by letting a large number of
clients to be serviced by a limited set of C++ implementation objects. Figure 3–3
shows the sequence diagram for stateless C++ cartridges.
3-12 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Stateful and Stateless Cartridges
Figure 3–3 Sequence diagram for stateless C++ cartridges

The numbers in Figure 3–3 are explained as follows:

1. The client does a CosNaming resolve() to obtain the object reference to a
C++ object.

2. The container creates an instance of the C++ object.

3. The object reference for the C++ object is returned to the client.

4. The client invokes a business method on the C++ object.

5. A new Context object is created.

6. A C++ implementation object is instantiated for this C++ object.

7. The container invokes setContext() on the implementation bject.

8. The container invokes cppCreate() .

9. The container delegates the business method to the implementation object,
which returns the result to the client.

C

Oracle Application ServerClient

C++ object
Context

resolve()

business method

new

new

new

setContext()

cppCreate()

delegates business method

C++
implementation

objectContainer

1.

2.
3.

4.
5.

6.

7.

8.

9.
Developing C++ Cartridges 3-13

Stateful and Stateless Cartridges
3-14 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Creating the Deployment De
4

Creating the Deployment Descriptor File

This chapter describes how to create the deployment descriptor file for C++ applica-
tions. By convention, the deployment descriptor file is named CPP.app. You create
one file per application, which is a collection of one or more C++ cartridge compo-
nents.

Contents
■ Overview

■ Structure of the Deployment Descriptor File

Overview
Once the C++ application is developed, you need to create a deployment descriptor
file that describes the properties of the C++ cartridges. The deployment descriptor
file provides information about the application, such as the name of the applica-
tion, the cartridges in it, and other information related to the cartridges.

Some of the values in the file are used as the default values for the application. You
can change these values after you have installed the application in the application
server.

Structure of the Deployment Descriptor File
The deployment descriptor file contains the following sections:

■ Application Section

■ Cartridge Section
scriptor File 4-1

Structure of the Deployment Descriptor File
Each cartridge in the application has its own [<cartridgeName>] section. For
example, if you have three cartridges in a C++ application, you would have one
[APPLICATION] section, and three [<cartridgeName>] sections.

Each section contains property name-value pairs of the form:

<propname> = <value>

propname cannot contain space characters. Note that the contents of the file are case-
sensitive.

Lines starting with a semicolon character (“;”) are comments, and the whole line is
ignored.

Note that this file is called CPP.app by convention: it can have any other name.

Application Section
The application section contains entries for the entire application. Following is an
example of the application section of CPP.app for the bank application:

[APPLICATION]
name = bank
timeout = 6000
transactions = Enabled
transactionalDads = BANK
authenticationString = Basic

Table 4–1 describes the properties of the [APPLICATION] section:

Table 4–1 Application properties

Property Description

name The name of the application. The name cannot contain “.” or white
space characters. This name is used by clients to identify the applica-
tion. (Clients identify the application using CosNaming or JNDI.)

This property is required.
4-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Structure of the Deployment Descriptor File
Cartridge Section
Each cartridge in the application must have its own section in the CPP.app file. Fol-
lowing is example of the cartridge section of CPP.app for the bank application:

[Account]
remoteInterface = Bank::Account
implementationClass = Bank::AccountImpl
implementationHeader = AccountImpl.h
timeout = 1000
stateless = false
authenticationString = Basic(BasicRealm)

timeout Application level timeout. How long in seconds an object can be idle
before it is destroyed.

When a C++ object has been idle for the specified duration (for
example, the client has not made a request for this specified amount
of time), the container can sever the connection between the client
and the C++ object. After severing the connection, container can use
the C++ object to service another client or it can destroy the C++
object.

If the timeout is not set or if it is set to 0, then no timeout processing
is performed. This timeout feature is intended to free up instances
when clients terminate abnormally and do not get to release the C++
object.

This property is optional. Default is 24 hours.

transactions The possible values are Enabled/Disabled. If transactions are
enabled, OTS is initialized when the server process comes up.

This property is optional. Default is Disabled.

transactionalDads This property is required if transactions are enabled. The value for
this property is a comma-separated list of transactional databases
used by the application.

authenticationString The string that describes the authentication realm with which the
C++ application is secured.

This property is optional. By default, an application does not require
any authentication.

Table 4–1 Application properties

Property Description
Creating the Deployment Descriptor File 4-3

Structure of the Deployment Descriptor File
[Account.ENV]
name1 = value1
name2 = value2

The name of the cartridge is specified between the square brackets. Clients use this
name to identify the C++ cartridge that they want to access. The cartridge name
cannot contain the “. ” character.

Table 4–2 describes the properties in the [<cartridgeName>] section.

Table 4–2 Cartridge properties

Property Description

remoteInterface The name of the cartridge remote interface. The deployment tools
described in Chapter 6, “Installing C++ Applications” look for this
interface in the IDL file.

This property is required.

implementation-
Class

The servant implementation of the remote interface. Inheritance-
based implementation is used from implementing the remote inter-
face, and therefore, this class is required to inherit from the skeleton
classes generated by the IDL compiler.

This property is required.

implementation-
Header

The name of the header file where the implementation class is
defined.

This property is required.

timeout Cartridge specific timeout value.

This property is optional. If no timeout value is specified, it defaults
to the application timeout.

stateless Whether the cartridge is stateful or stateless. The possible values for
this property are True/False.

This property is optional. Default is False.

authenticationString The string that describes the authentication realm with which the
C++ object is secured.

This property is optional. If the authentication string is not specified,
this property will take its value from the application authentication
string. If cartridge authentication string is specified, it will take pre-
cedence over the application authentication string.
4-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Structure of the Deployment Descriptor File
There are no pre-defined system properties for the [<cartridgeName.ENV] sec-
tion. This section is optional and contains cartridge-specific name value pairs. For
example, if you are creating a mortgage application, you could have a property that
specifies the interest rate:

[Mortgage.ENV]
interestRate = 8.0

The oas::cpp::Environment class provides a C++ implementation object with
access to the C++ cartridge's name value pairs. See Chapter 3, “Developing C++
Cartridges” for details.
Creating the Deployment Descriptor File 4-5

Structure of the Deployment Descriptor File
4-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Developing Clients for C++
5

Developing Clients for C++ Applications

This chapter describes how to develop clients for C++ applications. See Chapter 3,
“Developing C++ Cartridges” and Chapter 4, “Creating the Deployment Descrip-
tor File” for information on developing and deploying C++ applications in the Ora-
cle Application Server environment.

Contents
■ Overview

■ Client Side Object Request Broker (ORB)

■ Getting the Object Reference for a C++ Object

■ Using the C++ Cartridge

■ Security

■ Example

Overview
Developing clients for C++ application is very similar to creating clients for
CORBA objects in general. You can use any client side ORB (compliant with
CORBA 2.0 specification) for developing clients for C++ applications. Clients of
C++ applications can be any of the following:

■ C++ objects in the same or other C++ applications

■ Java applets running in browsers

■ Java applications

■ JServlet cartridges
 Applications 5-1

Client Side Object Request Broker (ORB)
C++ and Java clients can access the C++ cartridge as follows:

■ C++ Clients use the CORBA naming service to obtain C++ object references.
The mechanism of obtaining the root naming context of the CORBA naming
service running in Oracle Application Server is Oracle proprietary.

■ Java Clients use JNDI to obtain the reference of a C++ object. The JNDI SPI
implementation is provided with Oracle Application Server.

Client Side Object Request Broker (ORB)
To access C++ objects, you will need an ORB on the client side. You can use any
ORB that is CORBA 2.0 compliant. If you are using the ORB in Oracle Application
Server, see “Object Request Broker Administration” in the Oracle Application Server
Administration Guide on how to set up and configure the ORACLE ORB.

Getting the Object Reference for a C++ Object
Before a client can invoke a method on a C++ object, it must get a reference to that
object. Clients obtain a reference to the C++ object via the Oracle Application
Server naming tree.

The Naming Tree
The naming tree consists of the names of all the C++ applications and cartridges
deployed in the Oracle Application Server. C++ applications and cartridges are rep-
resented by nodes in the tree. The node corresponding to a C++ application is the
parent of the nodes corresponding to all the C++ cartridges contained in that appli-
cation.

Figure 5–1 is a diagrammatic representation of the naming tree.
5-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Getting the Object Reference for a C++ Object
Figure 5–1 A simple naming tree

A C++ application name can be split into sub-components. For example, a C++
application name can have two sub-components: app1 and app2. The name of this
application will be “app1/app2”. The naming tree will show “app2” as a sub-node
of “app1”. Similarly, cartridge names can also be split.

The naming tree is a transient naming tree, that is, it is not persistent. It is created
every time you start Oracle Application Server.

The naming tree is read-only. Clients can only read from the tree, they cannot bind
or add to the naming tree. If clients try to perform any operation that can change
the naming tree, they will get an exception like NO_PERMISSION.

Clients written in C++ and Java use this naming tree. C++ clients use CosNaming
to access the naming tree. Java clients use JNDI to access the naming tree. When cli-
ents perform a resolve() or a lookup() on a C++ cartridge name, they get the
object reference of a new C++ object. The client can make method invocations on
the C++ object. When the client does not need the object anymore, it should destroy
the C++ object.

Root Naming
Context

Application 1 Application 2

Cartridge 1 Cartridge 2
Developing Clients for C++ Applications 5-3

Getting the Object Reference for a C++ Object
Bootstrapping
This section explains how clients get to the root of the naming tree. Once clients get
to the root, they can browse the naming tree by using the standard methods in Cos-
Naming or JNDI. In the CORBA world, this boot strapping is generally achieved by
the resolve_initial_references() method. Since this method is not interop-
erable with other ORBs, Oracle provides a proprietary mechanism for bootstrap-
ping. This mechanism is independent of the ORB. It requires an Oracle Application
Server listener. This mechanism is different for Java and C++ clients:

■ C++ Clients

■ Java Clients

C++ Clients
C++ clients use CosNaming to access the naming tree. The clients can be either of
the following:

■ Remote clients: These run outside the Oracle Application Server site. They are
stand-alone C++ applications, or C++ cartridges running on another Oracle
Application Server site.

■ Local clients: These run in the same Oracle Application Server site. They are
stand-alone C++ applications, or another C++ cartridge. Local clients do not
need a listener to access the naming tree.

Included Files You include the header file wrccobs.h in your client code. While link-
ing the client, add the libcppcl.so/libcppcl.dll in the link line. These files are
located in $ORAWEB_HOME/cpp/lib/libcppcl.so and $ORAWEB_HOME/cpp/
public/wrccobs.h.

A copy of the OMG standard CosNaming interface is available in
$ORACLE_HOME/orb/4.0/public/cosnam.idl. Generate the stubs for cosnam.idl
using the IDL compiler of the client side ORB, and include them in the client pro-
gram.

Accessing the Naming Tree You use the OASNSBootStrap class for both remote and
local clients to access the root of the naming tree. This class consists of the follow-
ing static methods:

■ const char *getOASRootNamingContext (const char *url)

Used by remote clients. The url is of the form “oas://<host>:<port>”, where
host is the machine on which the Oracle Application Server listener is running,
5-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Getting the Object Reference for a C++ Object
and port is the port on which the listener is listening. This method returns a
stringified IOR of the root of the naming tree.

■ const char *getOASRootNamingContext ()

Used by local clients. The return value is a stringified IOR of the root of the
naming tree.

■ void freeIOR (const char *ior)

Used to free the memory occupied by the stringified IOR returned by the
getOASRootNamingContext() methods. A memory leak will occur, if the cli-
ent code does not call freeIOR().

You use the stringified IOR returned by the getOASRootNamingContext() meth-
ods as the IOR of the CosNaming::NamingContext interface. Call
string_to_object() on the IOR to get a CORBA::Object and then narrow the
CORBA::Object to a CosNaming::NamingContext object.

Exceptions The getOASRootNamingContext() methods can throw many excep-
tions. Situations which cause an exception to be thrown include:

■ Remote client fails to give the URL in the correct format.

■ Remote client uses the getOASRootNamingContext() method without the
URL.

All exceptions thrown by getOASRootNamingContext() derive from a base
class called OASException . An exception may or may not have a message associ-
ated with it. If an exception has a message, you can retrieve it using the getMes-
sage() method in the OASException class. See Chapter 7, “Reference” for more
on the exceptions thrown by the getOASRootNamingContext() methods.

Note that a local client can access the root of the naming tree via the Oracle Applica-
tion Server listener like a remote client

Java Clients
Java clients use JNDI to access the naming tree. The bootstrapping mechanism
(accessing the root of the naming tree) is a JNDI compliant mechanism. The clients
can be either of the following:

■ Remote clients: These need an Oracle Application Server listener. An example
of a remote client is a java applet.

■ Local clients: These do not need a listener. Example of local clients are EJB
beans, ECO beans, and JServlet cartridges.
Developing Clients for C++ Applications 5-5

Using the C++ Cartridge
Java clients access C++ applications similar to how they access ECO applications.
The only difference is that there is no concept of a home interface in C++ applica-
tions. In ECO applications, Java clients call JNDI lookup() on a ECO home name
to get the object reference of a ECO home object. In C++ applications, Java clients
call JNDI lookup() on a C++ cartridge name to get the object reference of the C++
object. Every time the client does a lookup() , it gets a new C++ object.

Java clients should have the file $ORAWEB_HOME/classes/ecoapi.jar in their
CLASSPATH to access C++ cartridges in the naming tree.

See Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applica-
tions for details. Refer to the Javasoft website www.javasoft.com for the JNDI API.

Using the C++ Cartridge
You should include the stubs of the cartridge IDL file in the client program. See
Chapter 6, “Installing C++ Applications” for how to use the Oracle IDL C++ com-
piler (oasoidlc).

Invoking Methods on the C++ object
CosNaming or JNDI generates an object reference for CORBA::Object object. You
narrow it to the required C++ object using the helper functions in the generated
stubs of the C++ cartridge.

Now the client can directly invoke methods on the C++ object. Only one client is
allowed to access a C++ object at a time. If the client is multi-threaded, and two cli-
ents try to access a C++ object simultaneously, one of them will get a
CORBA::TRANSIENT() exception. If a client receives this exception, it should reis-
sue the method call.

Destroying the C++ object
The client cannot directly destroy the C++ object. The C++ implementation object
destroys it by calling the remove() method on the Context object, which is given
to each implementation object. The client makes a method call on the C++ object,
and the method implementation calls remove() on the Context object to complete
the destruction of the C++ object.

When an implementation object calls remove() on its Context object in one of its
method invocations, it only destroys the C++ object on which the method invoca-
tion was made. In the case of stateful C++ cartridges, this will eventually destroy
the C++ implementation object also. But in the case of stateless C++ cartridges,
5-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Example
destroying a C++ object does not automatically destroy the C++ implementation object.

Object references are not reused between clients. Each client gets a brand new object refer-
ence every time it performs resolve() or lookup() on the C++ cartridge name.

If you do not destroy a C++ object, it will remain active until it times out. The timeout value
of each C++ cartridge is configurable.

Security
Oracle Application Server provides a comprehensive set of security features for protecting
IIOP-based applications, including C++ CORBA applications. Once a C++ cartridge is con-
figured for protection, the client has to supply its credentials to get the object reference of
the corresponding C++ object. Java clients of a protected C++ cartridge can use the JNDI
interface to supply these credentials.

C++ clients of a protected C++ cartridge cannot use the CORBA CosNaming interface, since
the CORBA CosNaming interface does not provide explicit support for passing security
parameters. Oracle Application Server has extended the CosNaming interface into a new
interface called SecNamingContext.

See the “Security for IIOP-based Applications: EJB, ECO/Java, and C++” chapter in the Ora-
cle Application Server Security Guide for more on the various authentication mechanisms.

Example
This program is the client code for accessing the C++ cartridge of the Bank application. The
client uses CosNaming to access the C++ cartridge.

#ifndef CPP_ORACLE
#include <cpp.h>
#endif

#include <cosnamC.h>
#include <BankC.h>

int
main (int argc, char **argv)
{

CORBA::ORB_var the_orb = CORBA::ORB_init(argc, argv);

long i = 0;
CosNaming::NamingContext_var rootNC_var = NULL;
Developing Clients for C++ Applications 5-7

Example
if (argc < 2)
{

cout << "Usage: " << argv[0] << " <oas://<host>:<port>" << endl;
exit (1);

}

// Obtain the IOR for the root naming context using the
// C++ cartridge Name Service boot strap mechanism. A stringified
// object reference of the root naming context is returned
// by the NSBootStrap object
try
{

const char* rootNCobj_ior = NULL;
CORBA::Object_ptr rootNCobj_ptr = NULL;

CosNaming::NamingContext_ptr rootNC_ptr = NULL;

rootNCobj_ior = oas::cpp::NSBootStrap::getOASRootNamingContext
(argv[1]);
rootNCobj_ptr = CORBA::ORB::string_to_object(rootNCobj_ior);
oas::cpp::NSBootStrap::freeIOR (rootNCobj_ior);

rootNC_ptr = CosNaming::NamingContext::_narrow(rootNCobj_ptr);
if (CORBA::is_nil(rootNC_ptr))
{

cerr << "Error obtaining root naming context!" << endl;
exit(1);

}

rootNC_var = rootNC_ptr;
}
catch (oas::cpp::URLFormatException &e)
{

cerr << "Invalid URL format: " << argv[1] << endl;
cerr << "Not understood from: " << e.getMessage() << endl;
exit(1);

}
catch (oas::cpp::ListenerException &e)
{

cerr << "Listener Error: Check if listener is running" << endl;
exit(1);

}

5-8 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Example
catch (oas::cpp::OutOfFileDescriptorsException &e)
{

cerr << "No more file descriptors" << endl;
exit(1);

}
catch (oas::cpp::UnknownAddressException &e)
{

cerr << "Address not known" << endl;
exit(1);

}
catch (oas::cpp::ConnectionFailedException &e)
{

cerr << "Connection failed. Try later" << endl;
exit(1);

}
catch (oas::cpp::IOException &e)
{

cerr << "IO Exception" << endl;
exit(1);

}
catch (oas::cpp::InternalErrorException &e)
{

cerr << "Internal error received: " << e.getMessage() << endl;
exit(1);

catch (oas::cpp::Exception &e)
{

cerr << "Unknown error received: " << e.getMessage() << endl;
exit(1);

}
catch (...)
{

cerr << "Unknown error obtaining root naming context" << endl;
exit(1);

}

// Create a CosNaming name object to access the c++ cartridge instance
CosNaming::Name name;
name.length(2);
name[0].id = CORBA::string_dup("Bank");
name[1].id = CORBA::string_dup("Account");

try
{

CORBA::Object_ptr cppobj_ptr = rootNC_var->resolve(name);
Developing Clients for C++ Applications 5-9

Example
if (CORBA::is_nil(cppobj_ptr))
{

cerr << "Error resolving Bank/Account" << endl;
exit(1);

}

cout << "c++ object : " << cppobj_ptr << endl;
Bank::Account_ptr account_ptr = Bank::Account::_narrow(cppobj_ptr);
if (CORBA::is_nil(account_ptr))
{

cerr << "Error narrowing Account instance" << endl;
exit(1);

}

//Get the smart var ptr for automatic release
Bank::Account_var account_var = account_ptr;
cout << "Balance: " << account_var->getBalance() << endl;
account_var->deposit(100);
cout << "Deposting: 100 bucks... " << endl;
cout << "New balance: " << account_var->getBalance() << endl;
account_var->destroy();

}
catch (CORBA::SystemException& se)
{

cerr << "Error: " << se._repository_id() << endl;
return 1;

 }
 catch (...)
 {

 cerr << "Unknown error" << endl;
 return 1;

 }

return 0;
}

5-10 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Installing C++ A
6

Installing C++ Applications

This chapter describes how to install and debug C++ applications in Oracle Appli-
cation Server.

Contents
■ Deploying Applications

■ Creating Client Executables

■ Using the Utilities

■ Location of Your Registered C++ Application

■ Reinstalling and Reloading Applications

■ Configuring C++ Applications on Remote Nodes

■ Debugging Applications

Deploying Applications
Deploying a C++ application on Oracle Application Server, consists of the follow-
ing steps:

1. Generating Stubs and Skeletons

2. Generating C++ Cartridge Factories

3. Creating the Shared Library

4. Installing the Application

If you modify the code of your C++ application, you need to re-deploy the applica-
tion so that the generated files are updated.
pplications 6-1

Deploying Applications
After you have installed the application, you can modify the values of its tuning
parameters, if necessary, using the Oracle Application Server Manager. See Oracle
Application Server Administration Guide for details. The default values of some con-
figuration parameters are taken from the CPP.app deployment information file.

Generating Stubs and Skeletons
You run the IDL C++ compiler to generate C++ stubs and skeletons for your IDL
file. For example:

prompt> oasoidlc -g cplus -I$(ORACLE_HOME)/orb/4.0/include Bank.idl

This command generates two sets of files:

■ BankS.cpp, BankS.h: The skeleton and its header for the interfaces in Bank.idl.

■ BankC.cpp, BankC.h: The stub and its header for the interfaces in Bank.idl.

See “The IDL C++ Compiler” on page 6-5 for more on using oasoidlc.

Generating C++ Cartridge Factories
After creating skeletons and stubs, you create the instance factories for each of the
cartridges in the application. You use the cppgen utility to create the cartridge
instance factories. For example, the following command creates cartridge instance
factories for the Bank application:

prompt> cppgen -a CPP.app -i Bank.idl -o .

This command generates two sets of files:

■ BankW.cpp, BankW.h: The factory for each cartridge instance.

■ BankT.cpp: The servant creation callback.

See “The cppgen Utility” on page 6-9 for more on using cppgen.

Creating the Shared Library
You create the shared library by linking in the object files of the generated code and
the implementation object code.

For Solaris
You need to dynamically link the file libwrcc.so to the cartridge shared library. The
libwrcc.so file contains the C++ cartridge runtime. The path for this file is
6-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Deploying Applications
$ORAWEB_HOME/cpp/lib. For example, for the Bank application the command
will be as follows:

prompt>CC -G -o Bank.so BankS.o BankC.o BankW.o BankT.o AccountImpl.o -L
$ORAWEB_HOME/cpp/lib/ -lwrcc -lCstd -lCrun

For Windows NT
Follow these steps for compiling and linking C++ cartridges on NT:

1. Link the following libraries for creating the C++ cartridge DLL:

■ $(ORACLE_HOME)\orb\lib\yop40.lib

■ $(ORACLE_HOME)\orb\lib\yoc40.lib

■ $(ORACLE_HOME)\orb\lib\yoctk40.lib

■ $(ORACLE_HOME)\orb\lib\yosc40.lib

■ $(ORACLE_HOME)\orb\lib\yoi40.lib

■ $(ORACLE_HOME)\orb\lib\yu40.lib

■ $(ORACLE_HOME)\orb\lib\yot40.lib

■ $(ORACLE_HOME)\orb\lib\ydc40.lib

■ $(ORACLE_HOME)\orb\lib\yr40.lib

■ $(ORACLE_HOME)\orb\lib\ys40.lib

■ $(ORACLE_HOME)\orb\lib\yt40.lib

■ $(ORACLE_HOME)\orb\lib\yun40.lib

■ $(ORAWEB_HOME)\lib\libwrkcl.lib

■ $(ORAWEB_HOME)\lib\libwrcc.lib

2. For each cartridge DLL, create a DEF file. The DEF file should have the follow-
ing entries:

EXPORTS
oracle_OAS_Cartridge_OASObject__getStubs
oracle_OAS_Cartridge_OASObject__getId
Bank_Account__getImpl

Note: For Solaris, version 5.0 of the C++ compiler is required.
Installing C++ Applications 6-3

Creating Client Executables
The first two entries in the exports section are required for every DLL. Then
add one entry for each cartridge in the C++ application, which has the follow-
ing format:

<applicationName>_<cartridgeName>__getImpl

If the application/cartridge name has '/'s in them, replace the forward slashes
with '_' character.

Installing the Application
You install the application shared library on the Oracle Application Server site by
using cppinstaller utility. For example:

prompt> cppinstaller -a CPP.app -l Bank.so

This command registers your application with the Oracle Application Server Site
Manager, and copies the application shared library to a standard location in the
Oracle Application Server site. See “The cppinstaller Utility” on page 6-9 for details.

You can also install your application using Oracle Application Server Manager. See
the Oracle Application Server Administration Guide.

Creating Client Executables
Creating a client executable consists of the following steps:

1. Generating Stubs of the Standard CosNaming Interface

2. Compiling and Linking the Client Program

Generating Stubs of the Standard CosNaming Interface
You need to generate stubs of the standard OMG CosNaming interface cosnam.idl.
For example:

prompt> oasoidlc -g cplus -A “oasoidlc.c-cplus-kwd=true” $ORACLE_HOME/orb/4.0/
public/cosnam.idl

Note: The C++ compiler should support namespaces for compil-
ing the stubs generated from compiling the IDL file.
6-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Using the Utilities
If the client is accessing a secure C++ cartridge, you need to use the SecCosNaming
interface from the $ORAWEB_HOME/public/secnaming.idl. See chapter “Security
for IIOP-Based Applications: EJB, ECO/Java. and C++” of the Oracle Application
Server Security Guide.

See “The IDL C++ Compiler” on page 6-5 for more on using oasoidlc.

Compiling and Linking the Client Program
Now you need to compile and link the client program with the required libraries
and runtime files. For example, to generate the client executable for the Bank appli-
cation (on the Solaris platform) you need to give the following command:

prompt>CC -o client client.o ../server/BankC.o cosnamC.o $ORACLE_HOME/orb/4.0/
lib/liborb.so $ORACLE_HOME/orb/4.0/lib/libyop.so $ORAWEB_HOME/cpp/lib/
libcppcl.so -lthread -lsocket

The above command links the ORB runtime files (liborb.so, libyop.so), the client
side library (libcppcl.so), the standard Solaris libraries (lthread, lsocket) with the
client files to create the client executable.

Note that Oracle Application Server uses the client side library libcppcl.so to get
the stringified IOR of the root naming context.

Using the Utilities
This section gives details about how to use the following utilities:

■ The IDL C++ Compiler

■ The cppgen Utility

■ The cppinstaller Utility

The IDL C++ Compiler
The IDL to C++ compiler is oasoidlc and is located in the $ORACLE_HOME/orb/
4.0/bin directory in your Oracle Application Server installed machine. The oasoidlc
command accepts CORBA IDL as input and produces a variety of files that can be
used to build Oracle ORB clients and servers.

OMG IDL specifications are accepted by the compiler. The IDL-to-C++ language
mapping used by the compiler corresponds to the CORBA 2.2 specification.
Installing C++ Applications 6-5

Using the Utilities
The oasoidlc compiler also supports the pragmas ID, prefix, and version related to
the CORBA 2.2 Interface Repository. See Chapter 6 of the CORBA specification
located at http://www.omg.org/ for more information.

Example
The following command compiles the simple.idl file:

prompt> oasoidlc -g cplus simple.idl

This generates the client stub and server skeleton, and the interface definition files:

■ simpleS.cpp, simpleS.h: The skeleton and its header for simple.idl.

■ simpleC.cpp, simple.h: The stub and its header for simple.idl.

Setting oasoidlc Environment Variables
The oasoidlc command provides certain environment variable settings, which can
be set before executing the command. Each variable is identified by a name and
may have one or more values.

For a UNIX c shell environment, the variable may be configured as follows using
one of following ways:

■ oasoidlc.environment_variable

or, if the variable requires a value:

oasoidlc. environment_variable=value

For example, the command foo uses the foo.verbose environment variable to
print or not print any extra information when you invoke the command. The
value of foo.verbose is set before executing foo, as demonstrated below:

% setenv foo.verbose=true

■ environment_variable

Some environment variables are not associated with a command; thus, would
not require the command name, oasoidlc, before the name. For example,
ys.log.msgFilePath is not associated with any command, so it is set without the
command as a prefix, as shown below:

% setenv ys.log.msgFilePath=/directory/for/log/file

Options
You can specify the options in any of the following ways:
6-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Using the Utilities
■ on the command line

■ by environment variables

■ as resource settings in your user environment (in resources.ora file)

Table 6–1 lists the options available with oasoidlc.

Table 6–1 oasoidlc compiler options

Option Description

-D name{=val} Define a macro name. Without a value, equivalent to #define
name 1. With a value, equivalent to #define name value. All
macro names defined in this manner are processed before any
macros that appear in the input file.

Environment variable name: oasoildlc.mnidlc.prepro-
cess.define.

-E Run only the preprocessor on the input. The preprocessed out-
put is written to stdout by default. Use -o to redirect the output
to a file. Syntactic and semantic analysis are not performed, and
no stubs are generated.

Environment variable name: oasoildlc.mnidlc.preprocess-
only=true.

-g language Specify the coding language for generating output files. The
choices are c, cplus, and java.

Environment variable name: oasoildlc.mnidlc.language.

-h Print usage information to stdout.

Environment variable name: oasoildlc.mnidlc.show-usage.

-I pathname Search for #include files in the directory specified by pathname.
See the following section titled Locating Include Files (-I) for
additional information.

Environment variable name: oasoildlc.mnidlc.prepro-
cess.include.

-l Generate headers only.

Environment variable name: oasoildlc.mnidlc.header-only.
Installing C++ Applications 6-7

Using the Utilities
Locating Include Files (-I)
File names in #include statements are located in the following manner if they are
not absolute file names:

■ The directory containing the current file is searched if the filename is enclosed
in double quotes (#include “fn”). The use of angle brackets (#include <fn>)
suppresses the search in the current directory.

■ If the include file is not located in the current directory, the directories specified
with -I are searched in the order they appear on the command line.

-n Generate no output; just perform preprocessing, syntactic and
semantic analysis. When used with -r, the IFR data file is still
generated.

Environment variable name: oasoildlc.mnidlc.no-output=true.

-o pathname Write generated files to pathname. When used with -E, pathname
must specify a file name. Otherwise, it should be a directory.

Environment variable name: oasoildlc.mnidlc.outputpath.

-r Save the repository contents after semantic analysis. The result-
ing data file can be loaded into the Interface Repository server.

Environment variable name: oasoildlc.mnidlc.save-reposi-
tory=true.

-T Print tracing information.

Environment variable name: oasoildlc.mnidlc.verbose=true.

-U name Undefine a macro name. This is equivalent to #undef name. All -
U options are processed after the -D options and before any pre-
processing is performed on the input file. Therefore, this option
can only be used to undo macro definitions set using the -D
option.

Environment variable name: oasoildlc.mnidlc.prepro-
cess.undef.

-V Print a version banner to stderr.

Environment variable name: oasoildlc.mnidlc.print-version.

-w Only show the error messages.

Environment variable name: oasoildlc.mnidlc.no-warn=true.

Table 6–1 oasoidlc compiler options

Option Description
6-8 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Location of Your Registered C++ Application
The cppgen Utility
You use the cppgen utility to create C++ cartridge factories.This utility is located in
the $ORAWEB_HOME/bin directory in your Oracle Application Server installed
machine. The syntax for cppgen is as follows:

prompt>cppgen -a <deploymentDescriptorFilename> -i <applicationIDLFilename>

You specify options on the command line. The available options are listed in
Table 6–2.

The cppinstaller Utility
You use the cppinstaller utility to install your application shared library on the Ora-
cle Application Server site. This utility is located in the $ORAWEB_HOME/bin
directory in your Oracle Application Server installed machine. The syntax for
cppinstaller is as follows:

prompt>cppgen -a <deploymentDescriptorFilename> -i <sharedLibraryName>

You specify options on the command line. The available options are listed in
Table 6–2.

Location of Your Registered C++ Application
Your registered C++ application is located in the $ORAWEB_HOME/../apps/cpp/
<appName> directory. See Figure 6–1.

Table 6–2 cppgen and cppinstaller options

Option Description

-a Deployment descriptor filename. By convention, it is CPP.app.

-i Application IDL file.

-l Shared library/DLL that implements the C++ cartridge.

-o Output directory where the generated files will be located.

-v Verbose. Prints diagnostic information.
Installing C++ Applications 6-9

Reinstalling and Reloading Applications
Figure 6–1 Location of a registered C++ application

Note that <appName>.app is the master configuration file that is used to register
the C++ application in Oracle Application Server. It includes the cartridge configu-
ration files (the <cartridgeName>.app files).

Reinstalling and Reloading Applications
If you modify your application (for example, if you modify the code, or you add or
remove C++ cartridges to the application, or you modify the configuration parame-
ters in the CPP.app file), you need to re-install the application using the Oracle
Application Server Manager.

To re-install the application:

1. Stop any running processes of the C++ application that you need to re-install.

2. Delete the application.

Select the application and click .

3. Re-install the application.

ORAWEB_HOME

admin bin classes

apps

cpp ejbeco4j jco

Bank

Bank.idl
Bank.so
Bank.app
Account.app
6-10 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Reinstalling and Reloading Applications
4. Select “All” in the Oracle Application Server Manager and click the reload icon

 so that the appropriate components of Oracle Application Server are noti-
fied. You do not have to re-start the application server.

If you change the configuration of the application using the Oracle Application
Server Manager (for example, if you change the minimum number of instances or if
you change the authentication string), you only need to reload the configuration
data; you do not have to re-install the application.

To reload the configuration data, select “All” in the Oracle Application Server Man-

ager and click the reload icon so that the appropriate components of Oracle
Application Server are notified. You do not have to re-start the application server.

Reinstalling C++ Applications from the Command-Line
Instead of re-installing C++ applications using the Oracle Application Server Man-
ager, you can re-install them using the $ORAWEB_HOME/bin/cppinstaller utility.

You need to set some environment variable before you can run cppinstaller. See
Table 6–3. You also need to source the file owsenv_csh.sh. See Oracle Application
Server Installation Guide for details.

Note: You cannot delete cartridges from a C++ application using
the Oracle Application Server Manager, despite the fact that the
delete button is active when you are viewing objects in the applica-
tion.

To delete cartridges from a C++ application, you have to remove
the cartridge and references to the cartridge from the deployment
information file CPP.app, delete the application using Oracle Appli-
cation Server Manager, and re-install the application.
Installing C++ Applications 6-11

Configuring C++ Applications on Remote Nodes
Note that you can use cppinstaller to install C++ applications on the primary node
only.

Configuring C++ Applications on Remote Nodes
Follow these steps to configure a C++ application on a remote node:

1. Install the application on the primary node of the Oracle Application Server
site. See“Deploying Applications” on page 6-1.

2. Create the directory $ORAWEB_HOME/../apps/cpp/<applicationName> on
the remote node.

3. Copy all files from the directory $ORAWEB_HOME/../apps/cpp/<applica-
tionName> on the primary node to the directory $ORAWEB_HOME/../apps/
cpp/<applicationName> on the remote node.

4. In Oracle Application Server Manager, click website40/Applications/<app-
name>/Configuration/Server/Hosts.

5. Click the newly added remote node for your application.

6. Reload Oracle Application Server.

Table 6–3 Environment variables for the cppinstaller utility

Environment variable Value

ORAWEB_HOME The top-level directory for Oracle Application Server.

Example: /private/app/oracle/product/8.0.4/ows/4.0 or
d:\orant\ows\4.0

ORAWEB_SITE The site name for Oracle Application Server.

Example: website40

ORACLE_HOME The directory that is the product base for Oracle products.

Example: /private/app/oracle/product/8.0.4 or d:\orant

CLASSPATH The location of C++ class files that Oracle Application Server
requires.

Example:
6-12 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Debugging Applications
Debugging Applications
You should debug your C++ application as much as possible on your development
platform before trying to debug it on Oracle Application Server’s deployment plat-
form. Debugging on a development platform is easier as you are working in a more
controlled environment, which allows you to determine and fix problems more effi-
ciently.

After you have tested and debugged C++ applications on your development plat-
form, you deploy and test them on Oracle Application Server. Oracle Application
Server provides debugging facilities in the form on logging messages.

The Logger Class
The oas::cpp::Logger class enables C++ cartridges to access Oracle Applica-
tion Server’s logger service, which can write messages to a file or database. To get a
logger object, you call the getLogger() method in the oas::cpp::Context
class.

Log Files
C++ cartridges can write messages to the log file that is used by Oracle Application
Server, or they can write to a different log file.

■ To write messages to Oracle Application Server’s log file, you do not have to
do anything. By default the logging service writes messages to the log file
defined by the Logging Directory and the Log File fields in the System Logging
form. To display this form in the Oracle Application Server Manager, click
website40/Oracle Application Server/Logging/System.

■ To write messages to a log file specifically for the C++ application, you specify
the log file in the Logging form. To display this form in the Oracle Application
Server Manager, click website40/Applications/<appname>/Configuration/
Logging. The log file specified in this form is used only by the cartridges in this
application.

You can also log messages to a database. See Oracle Application Server Administration
Guide for information on database logging.

Severity Levels
The Logger class writes messages only when they are at or below the severity level.
For example, if you set the severity level of the application server to 7, only mes-
sages with severity level of 7 or lower are written to the log.
Installing C++ Applications 6-13

Debugging Applications
You set the severity level for Oracle Application Server as a whole in the Severity
Level field in the System Logging form. To access this form in the Oracle Applica-
tion Server Manager, click website40/Oracle Application Server/Logging/System.

You can override the overall severity level of Oracle Application Server for individ-
ual applications. You might want to do this if you want to see more messages only
from specific applications. For example, you can set the overall severity level of
Oracle Application Server to a low value, such as 1, but set the severity level of the
application you are debugging to a high value, such as 10.

To override the severity level, you use the Logging form for the C++ application. To
access this form, click website40/Applications/<appname>/Configuration/Log-
ging.

To set the severity level of messages, call the setMessageSeverity() method in
the oas::cpp::Logger instance. The severity level is then set for all messages
sent from this C++ cartridge instance until you change it by calling the setMes-
sageSeverity () method again. You can determine the current severity level by
calling getMessageSeverity (). The default severity level is Log-
ger.LOG_SEVERITY_DEBUG.

Logging Modes
The logger can write messages as they occur or it can collect them and write them
in batch mode. Batch mode is more efficient because the logger does not have to
access the log file as many times as in non-batch mode. However, in batch mode, if
the system fails, messages in the logger that are waiting to be written to the log file
may not be written. Also, when you are debugging an application, you might want
to set the batch mode to off so that you can see messages in the log file with mini-
mal delay.

You set the batch mode in the Logging form (Figure 6–2).
6-14 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Debugging Applications
Figure 6–2 Logging form

Troubleshooting Tips
1. Increasing the logging level to 13 and checking the logging messages from the

cartridge server.

You can use this tip to find out if your shared library has unresolved symbols.

2. Starting the cartridge server manually.

You can use this tip:

■ If the cartridge server is core dumping. Starting the cartridge server manu-
ally will show the error messages on the screen.

■ If you do not want to use the logger. Use the printf() function in the car-
tridge code, and start the cartridge server manually. You will be able to see
the output of the printf() on the screen.

To start the cartridge server manually:

1. Source the owsenv.sh file.

2. Add $ORAWEB_HOME/cpp/lib to the LD_LIBRARY_PATH.

3. Use the command wrks -s <appname> to start the cartridge server.
Installing C++ Applications 6-15

Debugging Applications
6-16 Oracle Application Server Developer’s Guide: C++ CORBA Applications

7

Reference

This chapter contains reference pages for the following classes:

■ oas::cpp::Object Class (Server Side)

■ setContext

■ cppCreate

■ cppRemove

■ oas::cpp::Context Class (Server Side)

■ getLogger

■ getUserTransaction

■ getParameters

■ remove

■ getObject

■ oas::cpp::transaction::UserTransaction Class (Server Side)

■ begin

■ commit

■ rollback

■ getStatus

■ setTransactionTimeout

■ setRollbackOnly

■ oas::cpp::Environment Class (Server Side)
Reference 7-1

■ getNameByIndex

■ getParameterByName

■ getParameterByIndex

■ length

■ oas::cpp::Logger Class (Server Side)

■ << operator

■ setMessageSeverity

■ getLoggerSeverity

■ flush

■ oas::cpp::NSBootStrap Class (Client Side)

■ getOASRootNamingContext

■ freeIOR

■ oas::cpp::security::MessageDigest Class (Client Side)

■ getAlgorithm

■ getDigestLength

■ update

■ digest

■ digest

■ reset

■ oas::cpp::security::MessageDigestFactory Class (Client Side)

■ getInstance

■ Exception Classes

■ oas::cpp::CreateException

■ oas::cpp::RemoveException

■ oas::cpp::IllegalArgumentException

■ oas::cpp::IllegalArgumentException

■ oas::cpp::InternalErrorException

■ oas::cpp::UnknownAddressException
7-2 Oracle Application Server Developer’s Guide: C++ CORBA Applications

■ oas::cpp::URLFormatException

■ oas::cpp::OutOfFileDescriptorsException

■ oas::cpp::RootNCResolveFailedException

■ oas::cpp::ConnectionFailedException

■ oas::cpp::IOException

■ oas::cpp::ListenerException

■ oas::cpp::NameServerNotReachableException

■ oas::cpp::security::NoSuchAlgorithmException

All the classes listed in this chapter are defined in the header file cpp.h. So, the C++
client code as well as the C++ cartridge code needing to use these classes should
include the header file cpp.h.

All the above classes are arranged in a namespace hierarchy. Figure 7–1 and
Figure 7–2 give a summary of all the server-side and client-side classes available to
you for developing C++ applications.

Figure 7–1 Server-side class heirarchy

oas

cpp

object

Context

transaction

Environment

Logger

UserTransaction
Reference 7-3

Figure 7–2 Client-side class hierarchy

oas

cpp

NSBootStrap

security

MessageDigest

MessageDigestFactory
7-4 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::Object Class (Server Side)
oas::cpp::Object Class (Server Side)

This class must be inherited by the C++ implementation class. It consists of the life
cycle methods which are invoked by the container.

setContext

Syntax
void setContext(oas::cpp::Context* ctx);

Description
This method is invoked by the container to provide the implementation object with
the cartridge context. This method is invoked once by the container when the
implementation object is created. It is invoked before cppCreate() method is
invoked.

The cartridge context object (Context) is an important object that the implementa-
tion object uses to get the other objects like Logger, Environment, etc.

The implementation of the setContext() method should only store the Context
object in an instance variable of the implementation class. It should not do other
operation with the Context object.

The Context object should not be deleted by the implementation object.

Return Value
None

cppCreate

Syntax
void cppCreate() throw CreateException;
Reference 7-5

cppRemove
Description
I nvoked by the C++ cartridge container when a new implementation object is cre-
ated. The timing of the creation of a new implementation object depends on
whether the cartridge is stateful or stateless.

An implementation object for the stateful C++ cartridge is created when a client
does a resolve() on the cartridge node in the naming tree. An implementation
object for the stateless C++ object is created when the client invokes a method call
on a stateless C++ cartridge and no previously created implementation object is
available to execute the method call.

Exceptions
The implementation object can throw the oas::cpp::CreateException when
there is an error in creating the implementation object. This exception is propo-
gated to the client as the CORBA::NO_RESOURCES exception (for stateful C++ car-
tridges), or as CORBA::NO_IMPLEMENT exception (for stateless C++ cartridges).

For stateful C++ objects, this exception is thrown to the client when the client cre-
ates a C++ object using the resolve() or the secure_resolve() method on a
cartridge node in the naming tree. For stateless C++ objects, this exception is
thrown to the client when it makes a method call.

cppRemove

Syntax
void cppRemove();

Description
This method is invoked by the container before the implementation object is
deleted. The implementation object will be deleted either when it times out or after
the implementation object called remove() on its Context object.
7-6 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::Context Class (Server Side)
oas::cpp::Context Class (Server Side)

This class provides a C++ implementation object with access to the C++ cartridge
runtime container context. Each implementation object gets its own instance of the
oas::cpp::Context class. The implementation object obtains this context through the
setContext() method defined in the oas::cpp::Object Class (Server Side).

The implementation object should not delete the Context object.

getLogger

Syntax
oas::cpp::Logger& getLogger(int severity = OASLogger::SEVERITY_DEFAULT);

Description
Each implementation object gets its own instance of the oas::cpp::Logger class
The implementation object can use the getLogger() method to get the Logger
object.

The implementation object should not delete the Logger object.

Return Value
Reference to oas::cpp::Logger instance.

getUserTransaction

Syntax
oas::cpp::UserTransaction* getUserTransaction();
Reference 7-7

getParameters
Description
Gets the UserTransaction object. The C++ implementation object can use this to do
transaction demarcation. The implementation object should not delete the User-
Transaction object.

Return Value
The UserTransaction object.

getParameters

Syntax
oas::cpp::Environment* getEnvironment();

Description
The implementation object uses this method to get its Environment object, through
which it can access the environment parameters configured for the C++ cartridge.
The implementation object should not delete the Environment object.

remove

Syntax
void remove() throw (oas::cpp::RemoveException);

Description
Removes the C++ object. You invoke this method on the Context object when the
client no longer needs the C++ object. This is required for both stateless and stateful
C++ cartridges. Failure to do so can result in cartridge and memory leaks.

For stateful cartridges, calling remove() on the Context object will eventually result
in the destruction of the implementation object. For stateless cartridges, calling
remove() on the Context object will result in the destruction of the C++ object: the
object reference of the C++ object, which was used to make this method call in the
implementation class, will become invalid.
7-8 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::Context Class (Server Side)
Exceptions
Throws oas:cpp::RemoveException if an error occurs in destroying the C++
object.

getObject

Syntax
CORBA::Object* getObject();

Description
Obtains the reference to the C++ object that was used to make this method call on
the implementation class.
Reference 7-9

oas::cpp::transaction::UserTransaction Class (Server Side)
oas::cpp::transaction::UserTransaction Class (Server Side)

You use oas::cpp::transaction::UserTransaction for transaction demar-
cation and setting transaction timeout values.

begin

Syntax
void begin() throw (OASIllegalStateException);

Description
Begins a global transaction.

commit

Syntax
void commit() throw (OASTransactionRolledbackException,
 OASHeuristicMixedException,
 OASHeuristicRollbackException,
 OASIllegalStateException);

Description
Commits an existing transaction. Transactions can only span method boundaries. If
a transaction is not committed at the end of a method it is automatically rolled
back.
7-10 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::transaction::UserTransaction Class (Server Side)
rollback

Syntax
void rollback() throw (OASIllegalStateException);

Description
Rollsback an existing transaction.

getStatus

Syntax
int getStatus();

Description
Returns the transaction status. The valid values for the transaction status are listed
in Table 7–1.

Table 7–1 UserTransaction constants

Constant Syntax Description

STATUS_ACTIVE static const int STATUS_ACTIVE The transaction is
associated with the
target object and is
in the active state.

STATUS_MARKED_ROLLBACK static const int
STATUS_MARKED_ROLLBACK

The transaction has
been marked for
rollback (perhaps as
a result of setroll-
backOnly opera-
tion).
Reference 7-11

setTransactionTimeout
setTransactionTimeout

Syntax
void setTransactionTimeout(long timeout);

Description
Modifies the value of timeout that is associated with the transaction started by the
current thread with the begin method.

setRollbackOnly

Syntax
void setRollbackOnly() throw (OASIllegalStateException);

Description
Modifies the transaction associated with the current thread such that the only possi-
ble outcome of the transaction is to rollback.

STATUS_NO_TRANSACTION static const int
STATUS_NO_TRANSACTION

The transaction is
not associated with
a target object.

STATUS_UNKNOWN static const int
STATUS_UNKNOWN

The transaction’s
status is unknown
at this time.

Table 7–1 UserTransaction constants

Constant Syntax Description
7-12 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::Environment Class (Server Side)
oas::cpp::Environment Class (Server Side)

This class provides a C++ implementation object with access to the C++ cartridge's
environment parameters. These parameters are name-value pairs that can be config-
ured in the deployment descriptor or through the Oracle Application Server Man-
ager.

The cartridge can either look for a particular parameter name and get its value
using the getParameterByName() method; or get all the configured parameters
through an index using the getParameterByIndex() and getNameByIndex()
methods.

getNameByIndex

Syntax
const char *getNameByIndex(int index);

Description
Returns the name of the indexed environment parameter. If there are a total of N
parameters, the index can range from 0 to N-1. If the index is out of range, this
method returns a NULL. The returned name should not be modified.

getParameterByIndex

Syntax
const char *getParameterByIndex(int index);

Description
Returns the value of the indexed environment parameter. If there are a total of N
parameters, the index can range from 0 to N-1. If the index is out of range, this
method returns a NULL. The returned value should not be modified.
Reference 7-13

getParameterByName
getParameterByName

Syntax
const char *getParameterByName (const char *parameterName);

Description
Returns the value of the given parameter name. If the parameter does not exist, this
method returns NULL. The returned value should not be modified.

length

Syntax
int length();

Description
Returns the number of environment parameters.
7-14 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::Logger Class (Server Side)
oas::cpp::Logger Class (Server Side)

You use OASLogger to log the cartridge instance messages to the logging infra-
structure. Messages can be configured to either be logged in a cartridge specific log
file (one per process) or in the system-wide wrb.log file.

Severity level can be changed for each message logged. The Severity level is an inte-
ger ranging from 0 to 15. Level 0 is for fatal errors. Messages logged with level 0
cannot be prevented except by turning off system-wide logging. Level 15 is for least
signigicant log messages.

The severity level with which the messages should be logged can be set either via
cartridge configuration or via the setMessageSeverity() method. Whether the
message is really logged or not depends on the system-wide log-level setting in the
configuration.

<< operator

Syntax
OASLogger& operator<<(char arg);
OASLogger& operator<<(char* arg);
OASLogger& operator<<(const char* arg);
OASLogger& operator<<(int arg);
OASLogger& operator<<(void* arg);
OASLogger& operator<<(long arg);

Description
You can use oas::cpp::Logger like “cout” to log different primitive data struc-
tures that include char, char *, const char *, int, long and void *. The char * and
const char * should be null-terminated strings. The void * is printed as a pointer.
Reference 7-15

setMessageSeverity
setMessageSeverity

Syntax
void setMessageSeverity(int severity = OASLogger::SEVERITY_DEFAULT);

Description
Sets the message severity level. This will be the severity with which the subsequent
messages will be logged.

Parameters
severity: The severity level.

You can use the constants described in Table 7–2 to specify the severity of the mes-
sage. The lower the value, the more severe the message is.

getLoggerSeverity

Syntax
int getLoggerSeverity();

Description
Gets the current severity level for the logger which has been configured by the
administrator. This can be used by the developer to make a decision as to whether
a specific message should be logged or not.

Table 7–2 Logger class constants

Constant Description

SEVERITY_FATAL Severity of fatal error messages (1).

SEVERITY_WARNING Severity of warning messages (4).

SEVERITY_INITTERM Severity level is initiaize terminate (7).

SEVERITY_DEFAULT The default severity level (11).

SEVERITY_TRACE Severity of trace messages (15).
7-16 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::Logger Class (Server Side)
For example, if the current severity level is 7 and you have a tracing message, you
can ignore calling the write method since that message would not be logged.

Return Value
The current severity level.

flush

Syntax
void flush();

Description
Flush the stream written to by the user.
Reference 7-17

oas::cpp::NSBootStrap Class (Client Side)
oas::cpp::NSBootStrap Class (Client Side)

The OASNSBootStrap class helps C++ clients to get access to the root Naming Context of the read-only, transient
naming tree that contains all C++ applications and cartridges deployed in Oracle Application Server.

The C++ client can be local or remote to Oracle Application Server. Local clients are
C++ applications or other cartridges running in the Oracle Application Server envi-
ronment and can get direct access to the root naming context. Remote clients are
outside Oracle Application Server and get access to the root naming context via a
listener running in Oracle Application Server.

Various exceptions are thrown when the OASNSBootStrap object is used. All these
exceptions derive from the OASException class.

Example
Following is an example of remote client usage:

try
 {
 const char* rootNCobj_ior = NULL;
 CORBA::Object_ptr rootNCobj_ptr = NULL;

 CosNaming::NamingContext_ptr rootNC_ptr = NULL;

 rootNCobj_ior = oas::cpp::NSBootStrap::getOASRootNamingContext (“oas://
www.oracle.com:80”);
 rootNCobj_ptr = CORBA::ORB::string_to_object(rootNCobj_ior);
 oas::cpp::NSBootStrap::freeIOR (rootNCobj_ior);

 rootNC_ptr = CosNaming::NamingContext::_narrow(rootNCobj_ptr);
 if (CORBA::is_nil(rootNC_ptr))
 {
 cerr << "Error obtaining root naming context!" << endl;
 exit(1);
 }

 rootNC_var = rootNC_ptr;
 }
7-18 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::NSBootStrap Class (Client Side)
getOASRootNamingContext

Syntax
For local clients:

const char *getOASRootNamingContext() throw (OASException);

For remote clients:

const char *getOASRootNamingContext(const char *url);

Description
Returns the stringified IOR of the root naming context of the Oracle Application
Server naming tree.

Parameters
url: The URL in the form “oas::/host:port”. A trailing “/” will be ignored.

The “host” can either be the DNS name of the host, or the IP address in its standard
“dot” format. This is the name of the machine on which Oracle Application Server
listener is running. The “port” is the port on which the Oracle Application Server
listener is listening.

Exceptions
For local clients, throws:

■ oas::cpp::NameServerNotReachableException

■ oas::cpp::RootNCResolvedFailedException

■ oas::cpp::InternalErrorException

For remote clients, throws:

■ oas::cpp::URLFormatException

■ oas::cpp::ListenerException

■ oas::cpp::OutOfFileDescriptorsException

■ oas::cpp::UnknownAddressException

■ oas::cpp::ConnectionFailedException
Reference 7-19

freeIOR
■ oas::cpp::IOException

■ oas::cpp::InternalErrorException

freeIOR

Syntax
For local clients:

void freeIOR (const char *ior);

Description
Frees the memory occupioed by the stringified IOR returned by the getOASRoot-
NamingContext() methods. Failure to call this method will result in a memory leak.
7-20 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::security::MessageDigest Class (Client Side)
oas::cpp::security::MessageDigest Class (Client Side)

This class encapsulates an engine that generates message digests from inputs of
arbitrary length.

Since this is an abstract class, you need to create instances of this class by using the
oas::cpp::security::MessageDigestFactory Class (Client Side) class.

See Oracle Application Server Security Guide for more information.

Example
:
:
OASMessageDigest *md = 0;

 try {

 // Create an instance of OASMessageDigest that implements the MD5
algorithm
 md = OASMessageDigestFactory::getInstance("MD5");

 ...

 md->update(buf,0,100); // update the engine with input

 unsigned char *out_buf;
 int dig_len = md->digest(&out_buf); // obtain digest value

 cout << "getAlgorithm=" << md->getAlgorithm() << endl;
 cout << "getDigestLength=" << md->getDigestLength() << endl;

 md->reset(); // reset the engine

 }
 catch (...) {
 cout << "Exception caught" << endl;
 }

 ...
Reference 7-21

getAlgorithm
getAlgorithm

Syntax
const char * getAlgorithm();

Returns
The digest algorithm of this instance.

getDigestLength

Syntax
int getDigestLength();

Returns
The length of the digest in bytes generated by this instance.This value is usually
constant and does not depend on the length of input.For MD5, the digest length is
16 bytes (128 bit).

update

Syntax
void update(const unsigned char *input, int offset, int len) throw
(OASIllegalArgumentException);

Description
Updates the digest using the specified array of bytes.

Parameters
input: The specified array of bytes to update the digest with.

offset: The offset to start from in the array.
7-22 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::security::MessageDigest Class (Client Side)
len: The number of bytes to use.

Exceptions
oas::cpp::IllegalArgumentException

digest

Syntax
int digest(unsigned char *buffer) throw (OASIllegalArgumentException);

Description
Completes the digest computation and returns the digest as a new array.

Parameters
buffer: A buffer allocated by the client.

Exceptions
oas::cpp::IllegalArgumentException

digest

Syntax
int digest(unsigned char **buffer) throw (OASIllegalArgumentException);

Description
Completes the digest computation and returns the digest as a new array.The num-
ber of bytes in the new array is returned.

Parameters
buffer: The digest as an array of bytes. This array needs to be deleted by the client.
Reference 7-23

reset
Exceptions
oas::cpp::IllegalArgumentException

reset

Syntax
void reset();

Description
Resets the digest engine.
7-24 Oracle Application Server Developer’s Guide: C++ CORBA Applications

oas::cpp::security::MessageDigestFactory Class (Client Side)
oas::cpp::security::MessageDigestFactory Class (Client Side)

You use this class to create instances of oas::cpp::security::MessageDigest Class (Cli-
ent Side).

getInstance

Syntax
static OASMessageDigest *getInstance(const char *alg) throw
(OASNoSuchAlgorithmException);

Returns
Returns a MessageDigest instance that corresponds to the specified algorithm. The
only supported algorithm is "MD5".

Parameters
alg: The specified digest algorithm. The only supported algorith name is "MD5".

Exceptions
oas::cpp::NoSuchAlgorithmException
Reference 7-25

Exception Classes
Exception Classes

Figure 7–3 represents the class hierarchy of all the exception classes.

Figure 7–3 Class hierarchy of exception classes

oas::cpp::CreateException

Indicates that the creation of a C++ instance failed. The implementation object can
throw this exception when the container calls cppCreate() on it. Implementation

oas

cpp

CreateException

RemoveException

URLFormatException

UnknownAddressException

ConnectionFailedException

IOException

ListenerException

OutOfFileDescriptorsException

RootNCResolveFailedException

NameSeverNotReachableException

security

IllegalArgumentException

UserTransactionException

InternalErrorException

NoSuchAlgorithmException
7-26 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Exception Classes
objects should not throw this exception in their constructor or in the setCon-
text() methods.

The oas::cpp::CreateException is propogated to the client as the
CORBA::NO_RESOURCES exception (for stateful C++ cartridges), or as
CORBA::NO_IMPLEMENT exception (for stateless C++ cartridges).

For stateful C++ objects, this exception is thrown to the client when the client cre-
ates a C++ object using the resolve() or the secure_resolve() method on a
cartridge node in the naming tree. For stateless C++ objects, this exception is
thrown to the client when it makes a method call.

oas::cpp::RemoveException

Indicates that the remove of a C++ object failed.

oas::cpp::IllegalArgumentException

Indicates that the input parameters are incorrect.

oas::cpp::InternalErrorException

Indicates an internal error in Oracle Application Server. The message gives details
of the internal error.

oas::cpp::UnknownAddressException

Indicates that the given hostname cannot be resolved into an IP address.
Reference 7-27

oas::cpp::URLFormatException
oas::cpp::URLFormatException

Indicates a format error in the URL. The message contains the part of the URL that
has the format error.

oas::cpp::ConnectionFailedException

Indicates that the connection could not be established with the Oracle Application
Server listener. The most probable reason for this error is that the listener is not run-
ning.

oas::cpp::IOException

Indicates an I/O error. This could be a network read/write error.

oas::cpp::ListenerException

Indicates that the Oracle Application Server listener has not returned the IOR of the
Oracle Application Server root naming context. The message contains the content
returned by the listener.

oas::cpp::OutOfFileDescriptorsException

Indicates that the process has run out of file descriptors.
7-28 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Exception Classes
oas::cpp::RootNCResolveFailedException

Indicates that it is not possible to resolve the root naming context of the Oracle
Application Server naming tree. The most probable cause is that the remote client
did not specify the Oracle Application Server listener host:port as the URL.

oas::cpp::NameServerNotReachableException

Indicates that it is not possible to resolve the root naming context of the Oracle
Application Server naming tree. The most probable cause is that the naming server
is not responding.

oas::cpp::security::NoSuchAlgorithmException

Indicates that the specified algorithm is invalid.
Reference 7-29

oas::cpp::security::NoSuchAlgorithmException
7-30 Oracle Application Server Developer’s Guide: C++ CORBA Applications

Index

Symbols
<< operator, 7-15

A
application development

general CORBA vs. C++ CORBA cartridge, 1-6
application model

component-based, 1-1
applications

C++ cartridge, 1-1
configuring C++, 6-1
creating, 3-1
installing C++, 6-1

authenticationString property, 4-3, 4-4

B
base class, 3-3
begin() method, 7-10
bootstrapping, 5-4

C
C++ application

cartridges
creating, 2-2

configuring, 6-1
configuring on remote nodes, 6-12
creating, 3-1
creating remote interface, 3-1
definition, 1-2
deleting cartridges, 6-11

deploying, 2-6
deployment descriptor file, 4-1

creating, 4-1
developing clients, 5-1
files required, 6-10
installing, 6-1
invoking methods on cartridges, 5-6
reinstalling, 6-10
reloading, 6-10
running, 2-12
tutorial, 2-1

C++ cartridge
client view of, 1-3
creating, 2-2
creating remote interface, 3-1
definition, 1-2
deleting from application, 6-11
deploying the application, 2-6
implementation object, 3-2
overview, 1-1
runtime, 3-10
stateful vs.stateless, 3-10
transactions, 3-7
using, 5-6
using in an N-tier computing model, 1-7

C++ client, 5-4
accessing the naming tree, 5-4
exceptions, 5-5

C++ CORBA cartridge. See C++ cartridge
C++ implementation object

definition, 1-2
C++ object

definition, 1-2
destroying, 5-6
Index-1

getting object references, 5-2
invoking methods, 5-6
lifecycle, 1-5

C++ object implementation, 1-3
cartridge environment, 3-8

example, 3-9
cartridge IDL file

creating, 2-2
cartridge interface, 2-3
cartridge server, 1-2
cartridgeName.ENV section, 4-5
classes

exceptions, 7-26
oas::cpp::Context, 7-7
oas::cpp::environment, 7-13
oas::cpp::Logger, 6-13, 7-15
oas::cpp::MessageDigestFactory, 7-25
oas::cpp::NSBootStrap, 7-18
oas::cpp::Object, 7-5
oas::cpp::security::MessageDigest, 7-21
oas::cpp::security::MessageDigestFactory, 7-25
oas::cpp::transaction::UserTransaction, 7-10

client
bootstrapping, 5-4
C++, 5-4
client-side ORB, 5-2
creating, 2-8
Java, 5-5
security, 5-7

commit() method, 7-10
compiler, IDL C++, 6-5
compiling IDL files, 6-5
component-based application model, 1-1
container

architecture, 1-4
definition, 1-2

CORBA applications, 1-6
CORBA::Object object, 5-6
CORBA::TRANSIENT() exception, 5-6
CosNaming, 5-4
CPP.APP file, 2-5
CPP.app file, 4-1, 6-2
cppCreate() method, 7-5
cppgen utility, 6-9
cppinstaller utility, 6-9

environment variables for, 6-12
cppRemove() mothod, 7-6

D
deployment descriptor file

application section, 4-2
cartridge section, 4-3
creating, 4-1
name, 4-1

deployment information file
creating, 2-5

digest() method, 7-23

E
environment variables for cppinstaller, 6-12
environment, cartridge, 3-8

example, 3-9
exceptions, 7-26

F
files

CPP.APP, 2-5
CPP.app, 6-2

flush() method, 7-17
forms

Logging, 6-15
freeIOR() method, 7-20

G
getAlgorithm() method, 7-22
getDigestLength() method, 7-22
getInstance() method, 7-25
getLogger() method, 7-7
getLoggerSeverity() method, 7-16
getNameByIndex() method, 7-13
getOASRootNamingContext() method, 7-19
getObject() method, 7-9
getParameterByIndex() method, 7-13
getParameterByName() method, 7-14
getParameters() method, 7-8
getStatus() method, 7-11
Index-2

getUserTransaction() method, 7-7

H
home interface, 5-6

I
IDL

compiling, 6-5
language mapping, 6-5
skeletons, generating, 6-6
stubs, generating, 6-6

IDL C++ compiler, 6-5
implementation object, 3-2
implementationClass property, 4-4
implementationHeader property, 4-4
interface, cartridge, 2-3

J
Java client, 5-5
JNDI, 5-5

L
length() method, 7-14
load balancing, 1-5
log files

C++ application, 6-13
logging, 3-4

example, 3-5
severity levels, 3-4

Logging form
C++ application, 6-15

logging modes, 6-14
lookup() method, 5-6

M
methods

begin(), 7-10
commit(), 7-10
cppCreate(), 7-5
cppRemove(), 7-6
digest(), 7-23

flush(), 7-17
freeIOR(), 7-20
getAlgorithm(), 7-22
getDigestLength(), 7-22
getInstance(), 7-25
getLogger(), 7-7
getLoggerSeverity(), 7-16
getNameByIndex(), 7-13
getOASRootNamingContext(), 7-19
getObject(), 7-9
getParameterByIndex(), 7-13
getParameterByName(), 7-14
getParameters(), 7-8
getStatus(), 7-11
getUserTransaction(), 7-7
length(), 7-14
lookup(), 5-6
remove(), 7-8
reset(), 7-24
rollback(), 7-11
setContext(), 7-5
setMessageSeverity(), 7-16
setRollbackOnly(), 7-12
setTransactionTimeout(), 7-12
update(), 7-22

mnidlc.language parameter, 6-7
mnidlc.no-output parameter, 6-7, 6-8
mnidlc.no-warn parameter, 6-8
mnidlc.outputpath parameter, 6-8
mnidlc.preprocess.define parameter, 6-7
mnidlc.preprocess.include parameter, 6-7
mnidlc.preprocess-only parameter, 6-7
mnidlc.preprocess.undef parameter, 6-8
mnidlc.print-version parameter, 6-8
mnidlc.save-repository parameter, 6-8
mnidlc.show-usage parameter, 6-7
mnidlc.verbose parameter, 6-8

N
name property, 4-2
name value pairs, 3-8, 4-5
naming tree, 5-2
N-tier computing model, 1-7
Index-3

O
oas::cpp::Context class, 7-7
oas::cpp::Context object, 3-4
oas::cpp::Environment class, 7-13
oas::cpp::Logger class, 6-13, 7-15
oas::cpp::MessageDigestFactory class, 7-25
oas::cpp::NSBootStrap class, 7-18
oas::cpp::Object class, 3-3, 7-5
oas::cpp::security::MessageDigest class, 7-21
oas::cpp::security::MessageDigestFactory

class, 7-25
oas::cpp::transaction::UserTransaction class, 7-10
oasoidlc compiler, 6-5
ORB

client side, 5-2
overview

C++ cartridge, 1-1

P
parameters, environment, 3-8

R
remote interface

C++ application, 3-1
remote node, configuring on, 6-12
remoteInterface property, 4-4
remove() method, 7-8
reset() method, 7-24
resource pooling, 1-6
rollback() method, 7-11
runtime, C++ cartridge, 3-10

S
SecNamingContext interface, 5-7
security, 5-7
setContext() method, 7-5
setMessageSeverity() method, 7-16
setRollbackOnly() method, 7-12
setTransactionTimeout() method, 7-12
severity levels, 3-4, 6-13
stateful and stateless cartridges, 3-10
stateless property, 4-4

T
terminology, 1-2
timeout property, 4-3, 4-4
transactionalDads property, 4-3
transactions, 3-7

example, 3-7
transactions property, 4-3
troubleshooting tips, 6-15
tutorial

C++ application, 2-1

U
update() method, 7-22
utilities

cppgen, 6-9
cppinstaller, 6-9
oasoidlc, 6-5
Index-4

	1 Overview
	A Component Based Application Model
	Terminology
	Client View of the C++ CORBA Cartridge
	Container Architecture
	Application Development: General CORBA vs. C++ COR...
	Using C++ Cartridge in an N-tier Computing Model

	2 Tutorial
	Files in the Tutorial
	1. Writing the Cartridge IDL File
	2. Creating the Implementation Object
	3. Creating the Deployment Descriptor File
	4. Deploying the Application
	5. Creating the Client Program
	6. Creating the Client Executable
	7. Running the Client to Access the C++ Applicatio...

	3 Developing C++ Cartridges
	Cartridge Remote Interface
	C++ Implementation Object
	Logging
	Transactions
	Cartridge Environment
	Stateful and Stateless Cartridges

	4 Creating the Deployment Descriptor File
	Overview
	Structure of the Deployment Descriptor File

	5 Developing Clients for C++ Applications
	Overview
	Client Side Object Request Broker (ORB)
	Getting the Object Reference for a C++ Object
	Using the C++ Cartridge
	Security
	Example

	6 Installing C++ Applications
	Deploying Applications
	Creating Client Executables
	Using the Utilities
	Location of Your Registered C++ Application
	Reinstalling and Reloading Applications
	Configuring C++ Applications on Remote Nodes
	Debugging Applications

	7 Reference
	oas::cpp::Object Class (Server Side)
	oas::cpp::Context Class (Server Side)
	oas::cpp::transaction::UserTransaction Class (Serv...
	oas::cpp::Environment Class (Server Side)
	oas::cpp::Logger Class (Server Side)
	oas::cpp::NSBootStrap Class (Client Side)
	oas::cpp::security::MessageDigest Class (Client Si...
	oas::cpp::security::MessageDigestFactory Class (Cl...
	Exception Classes

	Index

